4.7 Article

Comparative landscape genetics of two river frog species occurring at different elevations on Mount Kilimanjaro

期刊

MOLECULAR ECOLOGY
卷 23, 期 20, 页码 4989-5002

出版社

WILEY
DOI: 10.1111/mec.12921

关键词

amphibians; amplified fragment length polymorphism; anthropogenic disturbance; climate change; gene flow; tropical mountains

资金

  1. German Excellence Initiative
  2. DFG-Research Unit [FOR1246]

向作者/读者索取更多资源

Estimating population connectivity and species' abilities to disperse across the landscape is crucial for understanding the long-term persistence of species in changing environments. Surprisingly, few landscape genetic studies focused on tropical regions despite the alarming extinction rates within these ecosystems. Here, we compared the influence of landscape features on the distribution of genetic variation of an Afromontane frog, Amietia wittei, with that of its more broadly distributed lowland congener, Amietia angolensis, on Mt. Kilimanjaro, Tanzania. We predicted high gene flow in the montane species with movements enhanced through terrestrial habitats of the continuous rainforest. In contrast, dispersal might be restricted to aquatic corridors and reduced by anthropogenic disturbance in the lowland species. We found high gene flow in A.wittei relative to other montane amphibians. Nonetheless, gene flow was lower than in the lowland species which showed little population structure. Least-cost path analysis suggested that dispersal is facilitated by stream networks in both species, but different landscape features were identified to influence connectivity among populations. Contrary to a previous study, gene flow in the lowland species was negatively correlated with the presence of human settlements. Also, genetic subdivision in A.wittei did not coincide with specific physical barriers as in other landscape genetic studies, suggesting that factors other than topography may contribute to population divergence. Overall, these results highlight the importance of a comparative landscape genetic approach for assessing the influence of the landscape matrix on population connectivity, particularly because nonintuitive results can alter the course of conservation and management.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据