4.7 Review

Critical review of NGS analyses for de novo genotyping multigene families

期刊

MOLECULAR ECOLOGY
卷 23, 期 16, 页码 3957-3972

出版社

WILEY
DOI: 10.1111/mec.12843

关键词

adaptation; bioinfomatics; phyloinfomatics; gene structure and function; genomics; proteomics; molecular evolution; population genetics - empirical

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. NSERC
  3. Earth and Life Science Alliance (ELSA)
  4. Leverhulme Trust [RPG-2013-305]

向作者/读者索取更多资源

The genotyping of highly polymorphic multigene families across many individuals used to be a particularly challenging task because of methodological limitations associated with traditional approaches. Next-generation sequencing (NGS) can overcome most of these limitations, and it is increasingly being applied in population genetic studies of multigene families. Here, we critically review NGS bioinformatic approaches that have been used to genotype the major histocompatibility complex (MHC) immune genes, and we discuss how the significant advances made in this field are applicable to population genetic studies of gene families. Increasingly, approaches are introduced that apply thresholds of sequencing depth and sequence similarity to separate alleles from methodological artefacts. We explain why these approaches are particularly sensitive to methodological biases by violating fundamental genotyping assumptions. An alternative strategy that utilizes ultra-deep sequencing (hundreds to thousands of sequences per amplicon) to reconstruct genotypes and applies statistical methods on the sequencing depth to separate alleles from artefacts appears to be more robust. Importantly, the degree of change' (DOC) method avoids using arbitrary cut-off thresholds by looking for statistical boundaries between the sequencing depth for alleles and artefacts, and hence, it is entirely repeatable across studies. Although the advances made in generating NGS data are still far ahead of our ability to perform reliable processing, analysis and interpretation, the community is developing statistically rigorous protocols that will allow us to address novel questions in evolution, ecology and genetics of multigene families. Future developments in third-generation single molecule sequencing may potentially help overcome problems that still persist in de novo multigene amplicon genotyping when using current second-generation sequencing approaches.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据