4.7 Article

Complex phylogeographic patterns in the freshwater alga Synura provide new insights into ubiquity vs. endemism in microbial eukaryotes

期刊

MOLECULAR ECOLOGY
卷 19, 期 19, 页码 4328-4338

出版社

WILEY
DOI: 10.1111/j.1365-294X.2010.04813.x

关键词

biogeography; endemism; Synura; Synurophyceae; ubiquity hypothesis

资金

  1. Korean Science and Engineering Foundation (KOSEF) (MOST) [R01-2006-000-10207-0, KRF-2008-357-C00148]
  2. National Science Foundation [EF 08-27023, EF 04-31117, DEB-0937975]
  3. NSF Division of Environmental Biology [DEB-0716606]
  4. Natural Sciences and Engineering Research Council of Canada
  5. National Research Foundation of Korea [R01-2006-000-10207-0] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)
  6. Direct For Biological Sciences
  7. Division Of Environmental Biology [0949211, 0937975] Funding Source: National Science Foundation

向作者/读者索取更多资源

The global distribution, abundance, and diversity of microscopic freshwater algae demonstrate an ability to overcome significant barriers such as dry land and oceans by exploiting a range of biotic and abiotic colonization vectors. If these vectors are considered unlimited and colonization occurs in proportion to population size, then globally ubiquitous distributions are predicted to arise. This model contrasts with observations that many freshwater microalgal taxa possess true biogeographies. Here, using a concatenated multigene data set, we study the phylogeography of the freshwater heterokont alga Synura petersenii sensu lato. Our results suggest that this Synura morphotaxon contains both cosmopolitan and regionally endemic cryptic species, co-occurring in some cases, and masked by a common ultrastructural morphology. Phylogenies based on both proteins (seven protein-coding plastid and mitochondrial genes) and DNA (nine genes including ITS and 18S rDNA) reveal pronounced biogeographic delineations within phylotypes of this cryptic species complex while retaining one clade that is globally distributed. Relaxed molecular clock calculations, constrained by fossil records, suggest that the genus Synura is considerably older than currently proposed. The availability of tectonically relevant geological time (107-108 years) has enabled the development of the observed, complex biogeographic patterns. Our comprehensive analysis of freshwater algal biogeography suggests that neither ubiquity nor endemism wholly explains global patterns of microbial eukaryote distribution and that processes of dispersal remain poorly understood.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据