4.7 Article

Contribution of cyclic parthenogenesis and colonization history to population structure in Daphnia

期刊

MOLECULAR ECOLOGY
卷 18, 期 8, 页码 1616-1628

出版社

WILEY
DOI: 10.1111/j.1365-294X.2009.04130.x

关键词

clonal structure; Daphnia longispina complex; genetic differentiation; microsatellites; mitochondrial DNA; monopolization hypothesis

资金

  1. German Science Foundation (DFG) [SCHW 830/6-1]
  2. Czech Ministry of Education [MSM0021620828]
  3. German Academic Exchange Service (DAAD)
  4. Czech Science Foundation [DIV/06/E007, 206/04/0190]
  5. LAKES [ENV4-CT97-0585]

向作者/读者索取更多资源

Cyclic parthenogenesis, the alternation of parthenogenetic and sexual reproduction, can lead to a wide scope of population structures, ranging from almost monoclonal to genetically highly diverse populations. In addition, sexual reproduction in aquatic cyclic parthenogens is associated with the production of dormant stages, which both enhance potential gene flow among populations as well as impact local evolutionary rates through the formation of dormant egg banks. Members of the cladoceran genus Daphnia are widely distributed key organisms in freshwater habitats, which mostly exhibit this reproduction mode. We assessed patterns of genetic variation within and among populations in the eurytopic and morphologically variable species Daphnia longispina, using data from both nuclear (13 microsatellite loci) and mitochondrial (partial sequencing of the 12S rRNA gene) markers from a set of populations sampled across Europe. Most populations were characterized by very high clonal diversity, reflecting an important impact of sexual reproduction and low levels of clonal selection. Among-population genetic differentiation was very high for both nuclear and mitochondrial markers, and no strong pattern of isolation by distance was observed. We also did not observe any substantial genetic differentiation among traditionally recognized morphotypes of D. longispina. Our findings of high levels of within-population genetic variation combined with high among-population genetic differentiation are in line with predictions of the monopolization hypothesis, which suggests that in species with rapid population growth and potential for local adaptation, strong priority effects due to monopolization of resources lead to reduced levels of gene flow.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据