4.6 Article

Betulinic Acid Decreases ER-Negative Breast Cancer Cell Growth In Vitro and In Vivo: Role of Sp Transcription Factors and MicroRNA-27a:ZBTB10

期刊

MOLECULAR CARCINOGENESIS
卷 52, 期 8, 页码 591-602

出版社

WILEY-BLACKWELL
DOI: 10.1002/mc.21893

关键词

MDA-MB-231-breast cancer; ZBTB10; Sp-transcription factors

资金

  1. National Institutes of Health [KOIATOO 4597]
  2. DOD-Army Breast Cancer Research Program [BC095260]
  3. National CAPES Foundation (Ministry of Education of Brazil) [BEX130-08-7]
  4. CDMRP [545019, BC095260] Funding Source: Federal RePORTER

向作者/读者索取更多资源

Betulinic acid (BA), a pentacyclic triterpenoid isolated from tree bark is cytotoxic to cancer cells. There is evidence that specificity proteins (Sps), such as Sp1, Sp3, and Sp4, are overexpressed in tumors and contribute to the proliferative and angiogenic phenotype associated with cancer cells. The objective of this study was to determine the efficacy of BA in decreasing the Sps expression and underlying mechanisms. Results show that BA decreased proliferation and induced apoptosis of estrogen-receptor-negative breast cancer MDA-MB-231 cells. The BA-induced Sp1, Sp3, and Sp4 downregulation was accompanied by increased zinc finger ZBTB10 expression, a putative Sp-repressor and decreased microRNA-27a levels, a microRNA involved in the regulation of ZBTB10. Similar results were observed in MDA-MB-231 cells transfected with ZBTB10 expression plasmid. BA induced cell cycle arrest in the G2/M phase and increased Myt-1 mRNA (a microRNA-27a target gene), which causes inhibition in G2/M by phosphorylation of cdc2. The effects of BA were reversed by transient transfection with a mimic of microRNA-27a. In nude mice with xenografted MDA-MB-231 cells, tumor size and weight were significantly decreased by BA treatment. In tumor tissue, ZBTB10 mRNA was increased while mRNA and protein of Sp1, Sp3 and Sp4, as well as mRNA of vascular endothelial growth factor receptor (VEGFR), survivin and microRNA-27a were decreased by BA. In lungs of xenografted mice, human 2-microglobulin mRNA was decreased in BA-treated animals. These results show that the anticancer effects of BA are at least in part based on interactions with the microRNA-27a-ZBTB10-Sp-axis causing increased cell death. (c) 2012 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据