4.6 Article

XIAP Inhibition and Generation of Reactive Oxygen Species Enhances TRAIL Sensitivity in Inflammatory Breast Cancer Cells

期刊

MOLECULAR CANCER THERAPEUTICS
卷 11, 期 7, 页码 1518-1527

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1535-7163.MCT-11-0787

关键词

-

类别

资金

  1. American Cancer Society [RSG-08-290-01-CCE]
  2. predoctoral DOD BCRP award
  3. Duke University Chancellor's Scholarship
  4. Duke viral oncology grant

向作者/读者索取更多资源

We recently identified superoxide dismutase (SOD) overexpression and decreased induction of reactive oxygen species (ROS)-mediated apoptosis in models of inflammatory breast cancer (IBC) cells with acquired therapeutic resistance. This population of cells has high expression of X-linked inhibitor of apoptosis protein (XIAP), which inhibits both extrinsic and intrinsic apoptosis pathways. We therefore wanted to evaluate the effect of classical apoptosis-inducing agent TRAIL, a proapoptotic receptor agonist that selectively triggers death receptor (DR)-mediated apoptosis in cancer cells, in the IBC acquired resistance model. XIAP levels and subsequent inhibition of caspase activity inversely correlated with TRAIL sensitivity in our models of IBC. These include SUM149, a basal-type cell line isolated from primary IBC tumors and isogenic SUM149-derived lines rSUM149 and SUM149 wtXIAP, models of acquired therapeutic resistance with endogenous and exogenous XIAP overexpression, respectively. Inhibition of XIAP function using embelin, a plant-derived cell permeable small molecule, in combination with TRAIL caused a synergistic decrease in cell viability. Embelin treatment resulted in activation of extracellular signal-regulated kinase (ERK)1/2 and ROS accumulation, which correlated with downregulation of antioxidant protein SOD1 and consumption of redox modulator reduced glutathione in the XIAP-overexpressing cells. Simultaneous treatment with an SOD mimic, which protects against ROS accumulation, reversed the decrease in cell viability caused by embelin + TRAIL treatment. Embelin primes IBC cells for TRAIL-mediated apoptosis by its direct action on the anti-caspase activity of XIAP and by shifting the cellular redox balance toward oxidative stress-mediated apoptosis. Thus, ROS modulators represent a novel approach to enhance efficacy of TRAIL-based treatment protocols in IBC. Mol Cancer Ther; 11(7); 1518-27. (c) 2012 AACR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据