4.6 Article

Modulation of drug resistance by artificial transcription factors

期刊

MOLECULAR CANCER THERAPEUTICS
卷 7, 期 3, 页码 688-697

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1535-7163.MCT-07-0381

关键词

-

类别

资金

  1. NIAID NIH HHS [AI 49165] Funding Source: Medline
  2. NIDDK NIH HHS [DK 54938] Funding Source: Medline
  3. NIGMS NIH HHS [R21 GM 075110] Funding Source: Medline

向作者/读者索取更多资源

The efficiency of chemotherapeutic treatments in cancer patients is often impaired by the acquisition of drug resistance. Cancer cells develop drug resistance through dysregulation of one or more genes or cellular pathways. To isolate efficient regulators of drug resistance in tumor cells, we have adopted a genome-wide scanning approach based on the screening of large libraries of artificial transcription factors (ATFs) made of three and six randomly assembled zinc finger domains. Zinc finger libraries were linked to a VP64 activation domain and delivered into a paclitaxel-sensitive tumor cell line. Following drug treatment, several ATFs were isolated that promoted drug resistance. One of these ATFs, 3ZF-1-VP, promoted paclitaxel resistance in cell lines having mutated or inactivated p53, such as MDA-MB-435 and Kaposi's sarcoma cell lines. 3ZF-1-VP also induced strong resistance to etoposide, vincristine, and cisplatinum. Linkage of a repression domain to the selected ATF resulted in enhanced sensitivity to multiple drugs, particularly vincristine, cisplatinum, and 5-fluorouracil. Small interfering RNA-mediated inhibition of p53 revealed that 3ZF-1-VP activated both p53-dependent and p53-independent mechanisms to promote survival, whereas other ATF required intact p53. Real-time expression analysis and DNA microarrays showed that several ATFs p-regulated targets of p53, such as the cyclin-dependent kinase inhibitor p21(WAF1/CIP1), and genes participating in the p14(ARF)-MDM2-p53 tumor suppressor pathway, such as hDMP1. Thus, ATF can be used to map genes and pathways involved in drug resistance phenotypes and have potential as novel therapeutic agents to inhibit drug resistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据