4.5 Article

Hypoxic Stress Facilitates Acute Activation and Chronic Downregulation of Fanconi Anemia Proteins

期刊

MOLECULAR CANCER RESEARCH
卷 12, 期 7, 页码 1016-1028

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1541-7786.MCR-13-0628

关键词

-

资金

  1. NIH [R01ES005775]
  2. NIH Medical Scientist Program Training Grant [T32GM007205]

向作者/读者索取更多资源

Hypoxia induces genomic instability through replication stress and dysregulation of vital DNA repair pathways. The Fanconi anemia (FA) proteins, FANCD2 and FANCI, are key members of a DNA repair pathway that responds to replicative stress, suggesting that they undergo regulation by hypoxic conditions. Here acute hypoxic stress activates the FA pathway via ubiquitination of FANCD2 and FANCI in an ATR-dependent manner. In addition, the presence of an intact FA pathway is required for preventing hypoxia-induced DNA damage measurable by the comet assay, limiting the accumulation of gamma H2AX (a marker of DNA damage or stalled replication), and protecting cells from hypoxia-induced apoptosis. Furthermore, prolonged hypoxia induces transcriptional repression of FANCD2 in a manner analogous to the hypoxic downregulation of BRCA1 and RAD51. Thus, hypoxia-induced FA pathway activation plays a key role in maintaining genome integrity and cell survival, while FA protein downregulation with prolonged hypoxia contributes to genomic instability. (C) 2014 AACR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据