4.4 Article

Cloning of a Novel Omega-6 Desaturase from Flax (Linum usitatissimum L.) and Its Functional Analysis in Saccharomyces cerevisiae

期刊

MOLECULAR BIOTECHNOLOGY
卷 42, 期 2, 页码 168-174

出版社

HUMANA PRESS INC
DOI: 10.1007/s12033-009-9150-3

关键词

FAD2; Omega-6 desaturase; Flax (Linum usitatissimum L.); Linoleic acid; Oleic acid; S. cerevisiae

资金

  1. Department of Biotechnology, Government of India

向作者/读者索取更多资源

The Delta 12 desaturase represents a diverse gene family in plants and is responsible for conversion of oleic acid (18:1) to linoleic acid (18:2). Several members of this family are known from plants like Arabidopsis and Soybean. Using primers from conserved C- and N-terminal regions, we have cloned a novel Delta 12 desaturase gene amplified from flax genomic DNA, denoted as LuFAD2-2. This intron-less gene is 1,149-base pair long encoding 382 amino acids-putative membrane-bound Delta 12 desaturase protein. Sequence comparisons show that the novel sequence has 85% similarity with previously reported flax Delta 12 desaturase at amino acid level and shows typical features of membrane-bound desaturase such as three conserved histidine boxes along with four membrane-spanning regions that are universally present among plant desaturases. The signature amino acid sequence 'YNNKL' was also found to be present at the N terminus of the protein, which is necessary and sufficient for ER localization of enzyme. Neighbor-Joining tree generated from the sequence alignment grouped LuFAD2-2 among the other FAD2 sequences from Ricinus, Hevea, Jatropha, and Vernicia. When LuFAD2-2 and LuFAD2 were expressed in Saccharomyces cerevisiae, they could convert the oleic acid to linoleic acid, with an average conversion rate of 5.25 and 8.85%, respectively. However, exogenously supplied linoleic acid was feebly converted to linolenic acid suggesting that LuFAD2-2 encodes a functional FAD2 enzyme and has substrate specificity similar to LuFAD2.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据