4.4 Article

ER-associated retrograde SNAREs and the Dsl1 complex mediate an alternative, Sey1p-independent homotypic ER fusion pathway

期刊

MOLECULAR BIOLOGY OF THE CELL
卷 25, 期 21, 页码 3401-3412

出版社

AMER SOC CELL BIOLOGY
DOI: 10.1091/mbc.E14-07-1220

关键词

-

资金

  1. National Institutes of Health [GM037739, GM071574, GM007388]

向作者/读者索取更多资源

The peripheral endoplasmic reticulum (ER) network is dynamically maintained by homotypic (ER-ER) fusion. In Saccharomyces cerevisiae, the dynamin-like GTPase Sey1p can mediate ER-ER fusion, but sey1 Delta cells have no growth defect and only slightly perturbed ER structure. Recent work suggested that ER-localized soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) mediate a Sey1p-independent ER-ER fusion pathway. However, an alternative explanation-that the observed phenotypes arose from perturbed vesicle trafficking-could not be ruled out. In this study, we used candidate and synthetic genetic array (SGA) approaches to more fully characterize SNARE-mediated ER-ER fusion. We found that Dsl1 complex mutations in sey1 Delta cells cause strong synthetic growth and ER structure defects and delayed ER-ER fusion in vivo, additionally implicating the Dsl1 complex in SNARE-mediated ER-ER fusion. In contrast, cytosolic coat protein I (COPI) vesicle coat mutations in sey1 Delta cells caused no synthetic defects, excluding perturbed retrograde trafficking as a cause for the previously observed synthetic defects. Finally, deleting the reticulons that help maintain ER architecture in cells disrupted for both ER-ER fusion pathways caused almost complete inviability. We conclude that the ER SNAREs and the Dsl1 complex directly mediate Sey1p-independent ER-ER fusion and that, in the absence of both pathways, cell viability depends upon membrane curvature-promoting reticulons.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据