4.8 Article

An Ancestral miR-1304 Allele Present in Neanderthals Regulates Genes Involved in Enamel Formation and Could Explain Dental Differences with Modern Humans

期刊

MOLECULAR BIOLOGY AND EVOLUTION
卷 29, 期 7, 页码 1797-1806

出版社

OXFORD UNIV PRESS
DOI: 10.1093/molbev/mss023

关键词

Neanderthal; gene regulation; miR-SNP; microRNA; miR-1304; tooth development

资金

  1. Spanish National Institute for Bioinformatics
  2. Espana [BFU2010-18477, BFU2009-06974, CGL2009-09013]
  3. Ministerio de Ciencia e Innovacion
  4. European Union Seventh Framework Programme [PIOF-GA-2009-236836]
  5. FEDER-European Regional Development Fund A way to build Europe''
  6. Consejeria de Cultura, Principado de Asturias
  7. Beca per a la Formacio de Personal Investigador (FI) fellowship from the Agencia de Gestio d'Ajuts Universitaris i de Recerca, Generalitat de Catalunya

向作者/读者索取更多资源

Genetic changes in regulatory elements are likely to result in phenotypic effects that might explain population-specific as well as species-specific traits. MicroRNAs (miRNAs) are posttranscriptional repressors involved in the control of almost every biological process. These small noncoding RNAs are present in various phylogenetic groups, and a large number of them remain highly conserved at the sequence level. MicroRNA-mediated regulation depends on perfect matching between the seven nucleotides of its seed region and the target sequence usually located at the 3' untranslated region of the regulated gene. Hence, even single changes in seed regions are predicted to be deleterious as they may affect miRNA target specificity. In accordance to this, purifying selection has strongly acted on these regions. Comparison between the genomes of present-day humans from various populations, Neanderthal, and other nonhuman primates showed an miRNA, miR-1304, that carries a polymorphism on its seed region. The ancestral allele is found in Neanderthal, nonhuman primates, at low frequency (similar to 5%) in modern Asian populations and rarely in Africans. Using miRNA target site prediction algorithms, we found that the derived allele increases the number of putative target genes for the derived miRNA more than ten-fold, indicating an important functional evolution for miR-1304. Analysis of the predicted targets for derived miR-1304 indicates an association with behavior and nervous system development and function. Two of the predicted target genes for the ancestral miR-1304 allele are important genes for teeth formation, enamelin, and amelotin. MicroRNA overexpression experiments using a luciferase-based assay showed that the ancestral version of miR-1304 reduces the enamelin- and amelotin-associated reporter gene expression by 50%, whereas the derived miR-1304 does not have any effect. Deletion of the corresponding target sites for miR-1304 in these dental genes avoided their repression, which further supports their regulation by the ancestral miR-1304. Morphological studies described several differences in the dentition of Neanderthals and present-day humans like slower dentition timing and thicker enamel for present-day humans. The observed miR-1304-mediated regulation of enamelin and amelotin could at least partially underlie these differences between the two Homo species as well as other still-unraveled phenotypic differences among modern human populations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据