4.8 Article

Molecular Evolution in Bacterial Endosymbionts of Fungi

期刊

MOLECULAR BIOLOGY AND EVOLUTION
卷 27, 期 3, 页码 622-636

出版社

OXFORD UNIV PRESS
DOI: 10.1093/molbev/msp280

关键词

arbuscular mycorrhizal fungi; Burkholderia; Glomeribacter gigasporarum; Glomeromycota; Rhizopus microsporus; Tremblaya princeps

资金

  1. National Science Foundation [DEB0918880]
  2. Division Of Environmental Biology
  3. Direct For Biological Sciences [0918880] Funding Source: National Science Foundation

向作者/读者索取更多资源

The prediction that progressive coupling of host and symbiont metabolic and reproductive interests leads to reduced mixing of symbiont lineages has been verified extensively in maternally transmitted bacterial endosymbionts of insects. To test whether this prediction is also applicable to associations of bacteria with fungi, we explored patterns of molecular evolution in two lineages of mutualistic endosymbionts of fungi: the Burkholderia endosymbionts of Rhizopus microsporus (Mucormycotina) and Candidatus Glomeribacter gigasporarum endosymbionts of arbuscular mycorrhizal fungi (Glomeromycota). We compared these two lineages with the closely related Candidatus Tremblaya princeps endosymbionts of mealybugs (Hemiptera, Coccoidea, Pseudococcidae) and to free-living Burkholderia species. To make inferences about the life histories of the endosymbionts, we relied on the empirically validated predictions of the nearly neutral theory of molecular evolution that a reduction of the effective population size increases the rate of fixation of slightly deleterious mutations. Our analyses showed that the slightly deleterious mutation accumulation patterns in the Burkholderia endosymbionts of Rhizopus were nearly indistinguishable from those in their free-living relatives. In contrast, Ca. Glomeribacter showed unique patterns of molecular evolution that differentiated them from both the Burkholderia endosymbionts of Rhizopus and from the Ca. Tremblaya endosymbionts of insects. These findings imply that reduced mixing of symbiont lineages is not a universal feature of symbioses between fungi and endocellular bacteria.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据