4.5 Article

Curcumin diminishes the impacts of hyperglycemia on the activation of hepatic stellate cells by suppressing membrane translocation and gene expression of glucose transporter-2

期刊

MOLECULAR AND CELLULAR ENDOCRINOLOGY
卷 333, 期 2, 页码 160-171

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.mce.2010.12.028

关键词

Hyperglycemia; Hepatic fibrosis; Glucose transport; Hepatic stellate cell; Polyphenol; Gene expression; Oxidative stress

资金

  1. NIH/NIDDK [DK 47995]

向作者/读者索取更多资源

Diabetes is featured by elevated levels of blood glucose, i.e. hyperglycemia, which might be a risk factor for hepatic fibrogenesis in patients with non-alcoholic steatohepatitis. Hepatic stellate cells (HSCs) are the major effectors during hepatic fibrogenesis. This study was designed to evaluate impacts of high levels of glucose on HSC activation, assess roles of the phytochemical curcumin in attenuating the glucose impacts, and elucidate underlying mechanisms. In this report, levels of intracellular glucose were measured. Contents and gene expression of glucose transporter-2 (GLUT2) in cell fractions were examined. Levels of cellular glutathione and oxidative stress were analyzed. We observed that high levels of glucose induced cell proliferation, type I collagen production and expression of genes relevant to HSC activation, and elevated intracellular glucose levels in cultured HSCs. Curcumin eliminated the stimulatory impacts. Curcumin abrogated the membrane translocation of GLUT2 by interrupting the p38 MAPK signaling pathway. In addition, curcumin suppressed glut2 expression by stimulating the activity of peroxisome proliferator-activated receptor-gamma (PPAR gamma) and de novo synthesis of glutathione. In conclusion, hyperglycemia stimulated HSC activation in vitro by increasing intracellular glucose, which was eliminated by curcumin by blocking the membrane translocation of GLUT2 and suppressing glut2 expression. The latter was mediated by activating PPAR gamma and attenuating oxidative stress. Our results presented evidence to impacts of hyperglycemia on stimulating HSC activation and hepatic fibrogenesis, and provided novel insights into the mechanisms by which curcumin eliminated the hyperglycemia-caused HSC activation and potential therapeutic strategies for treatment of diabetes-associated hepatic fibrogenesis. (C) 2011 Elsevier Ireland Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据