4.6 Article

Homocysteine modulates the proteolytic potential of human arterial smooth muscle cells through a reactive oxygen species dependant mechanism

期刊

MOLECULAR AND CELLULAR BIOCHEMISTRY
卷 335, 期 1-2, 页码 203-210

出版社

SPRINGER
DOI: 10.1007/s11010-009-0270-7

关键词

Homocysteine; Matrix metalloproteinases; Oxidative stress; Endothelial cell; Smooth muscle cell; Elastin

向作者/读者索取更多资源

Pathological levels of homocysteine induce a dramatic degradation of arterial elastic structures. This severe metalloproteinase-dependant elastolysis affects elastic structures all over the media suggesting that smooth muscle cells (SMC) may participate to this process induced by homocysteine. Therefore, we investigated the effect of physiological (10 mu M) and pathological (50, 100, and 500 mu M) concentrations of homocysteine on the metalloproteinase-dependant proteolytic potential of human arterial SMC in culture. Pathological levels of homocysteine increased concomitantly the secretion of latent MMP-2 and TIMP-2 while the secretion of other elastolytic matrix metalloproteinases (MMPs) and expression of MT1-MMP were not altered. The increased secretion of latent MMP-2 induced by homocysteine was associated with an increased production of reactive oxygen species (ROS). Moreover, the increased secretion of latent MMP-2 induced by homocysteine was inhibited by antioxidant superoxide dismutase alone or in combination with catalase. These results suggest that SMC could participate, through an oxidative stress dependant secretion of elastolytic MMP-2, to the metalloproteinase-dependant degradation of arterial elastic structures induced by homocysteine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据