4.6 Article

Anaplerosis from glucose, α-ketoisocaproate, and pyruvate in pancreatic islets, INS-1 cells and liver mitochondria

期刊

MOLECULAR AND CELLULAR BIOCHEMISTRY
卷 313, 期 1-2, 页码 195-202

出版社

SPRINGER
DOI: 10.1007/s11010-008-9757-x

关键词

acetoacetate; methyl succinate; synergistic secretagogue combinations; pancreatic islets; anaplerosis

资金

  1. NIDDK NIH HHS [DK28348, R01 DK028348] Funding Source: Medline

向作者/读者索取更多资源

Methyl succinate (MS) and alpha-ketoisocaproate (KIC) when applied alone to cultured pancreatic islets or INS-1 832/13 cells do not stimulate insulin release. However, when the two metabolites are combined together they strongly stimulate insulin release. Studying the possible explanations for this complementarity has provided clues to the pathways involved in insulin secretion. MS increased carbon incorporation of KIC into acid-precipitable material and lipid in INS-1 cells. In isolated mitochondria, MS alone increased malate, but MS plus KIC increased citrate, alpha-ketoglutarate, and isocitrate. These data and the known pathways of their metabolism suggest that MS supplies the oxaloacetate component of citrate and KIC supplies the acetate component of citrate. Other citric acid cycle intermediates can be formed from citrate enabling anaplerosis to supply precursors for extramitochondrial pathways. In addition, KIC, glucose and pyruvate can be metabolized to acetoacetate. In an INS-1 cell line deficient in ATP citrate lyase, incorporation of carbon from pyruvate into acid-precipitable material and lipid was not lowered. This negative result is in agreement with our recent discovery that citrate is not the only carrier of acyl groups from the mitochondria to the cytosol in the beta cell and that acetoacetate can also transfer acyl carbon to the cytosol.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据