4.7 Article

SLP-65 Phosphorylation Dynamics Reveals a Functional Basis for Signal Integration by Receptor-proximal Adaptor Proteins

期刊

MOLECULAR & CELLULAR PROTEOMICS
卷 8, 期 7, 页码 1738-1750

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/mcp.M800567-MCP200

关键词

-

资金

  1. European Union, HYBLIB

向作者/读者索取更多资源

Understanding intracellular signal transduction by cell surface receptors requires information about the precise order of relevant modifications on the early transducer elements. Here we introduce the B cell line DT40 and its genetically engineered variants as a model system to determine and functionally characterize post-translational protein modifications in general. This is accomplished by a customized strategy that combines mass spectrometric analyses of protein modifications with subsequent mutational studies. When applied to the B cell receptor (BCR)proximal effector SLP-65, this approach uncovered a differential and highly dynamic engagement of numerous newly identified phospho-acceptor sites. Some of them serve as kinase substrates in resting cells and undergo rapid dephosphorylation upon BCR ligation. Stimulation-induced phosphorylation of SLP-65 can be early and transient, or early and sustained, or late. Functional elucidation of conspicuous phosphorylation at serine 170 in SLP-65 revealed a BCR-distal checkpoint for some but not all possible B cell responses. Our data show that SLP-65 phosphorylation acts upstream for signal initiation and also downstream during selective processing of the BCR signal. Such a phenomenon defines a receptor-specific signal integrator. Molecular & Cellular Proteomics 8: 1738-1750, 2009.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据