4.5 Article Proceedings Paper

STRUCTURAL AND RF PROPERTIES OF Co2Z FERRITE FOR ANTENNA SUBSTATE

期刊

MODERN PHYSICS LETTERS B
卷 23, 期 31-32, 页码 3731-3737

出版社

WORLD SCIENTIFIC PUBL CO PTE LTD
DOI: 10.1142/S0217984909021764

关键词

Co(2)Z ferrite; small antennas; loss tangent; coaxial method

向作者/读者索取更多资源

The sintering behavior and high frequency electro-magnetic properties of Ba3Co2-(F) Fe24O41 ceramics were investigated for the small antenna application. All samples of the Ba3Co2Fe24O41 ceramics were prepared by the solid-state reaction method and sintered at 1150 degrees C 1400 degrees C. From the XRD patterns of calcined Ba3Co2Fe24O41 powders, the most suitable condition for calcining was 600 degrees C-1000 degrees C. Ba3Co2Fe24O41 phase was observed in sintered Ba3Co2Fe24O41 ceramics as main phase. Bulk densities increased with sintering temperature and decreased at 1400 degrees C. Permittivity and permeability of the Ba3Co2Fe24O41 ceramics increased or decreased with sintering temperature, respectively. On the other hand, loss tangent of permittivity and of permeability showed contrary tendency with permittivity and permeability. The permittivity and loss tangent of permittivity of Ba3Co2Fe24O41 ceramics sintered at 1300 degrees C were 19.896 and 0.171 at 210 MHz. and the measured value of permeability and loss tangent of permeability were 14.218 and 0.204, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Physics, Applied

Optical properties of the proton-implanted waveguide in the Dy3+-doped Y3Al5O12 transparent ceramic

Zi-Hao Wang, Jie Zhao, Li-Li Fu, Liao-Lin Zhang, Chun-Xiao Liu

Summary: This study reports on the preparation of optical waveguides in Dy3+-doped Y3Al5O12 transparent ceramics using proton implantation. The fabricated waveguides exhibit a high-quality waveguide structure and efficient light propagation.

MODERN PHYSICS LETTERS B (2024)

Article Physics, Applied

Ab-initio study on structural, magnetic, electronic and optical properties of SrCo1-xAxO3 (A = Fe or Cr, x=0.125 and 0.25)

Ahmed Memdouh Younsi, Abdelaziz Rabehi, Lakhdar Gacem, Mohamed Toufik Soltani

Summary: In this study, first-principles calculations were used to investigate the structural, electronic, optical, and magnetic properties of SrCo1-xAxO3 (A=Fe or Cr, x=0.125 and 0.25) materials. It was found that the doping of Fe increased the magnetic moment and all materials exhibited metallic conductivity. The variations in the real part values suggested a Drude-like dielectric function behavior for this material.

MODERN PHYSICS LETTERS B (2024)

Article Physics, Applied

Photocurrent performance and enhancement of opto-electronic properties of spray pyrolysis deposited ZnO thin films via V-doping

L. Derbali, F. Bouhjar, A. Derbali

Summary: This study reports on the deposition of highly transparent conducting n-type zinc oxide (ZnO) thin films on FTO substrates, using an optimized doping process. The results showed that 4% vanadium (V) doping significantly enhances the crystallinity of the thin films, improves the electrical conductivity and reduces deep level defects in ZnO. The V-doped ZnO thin films exhibit high transparency, enhanced UV emission, and improved carrier mobility, leading to higher photocatalytic performance.

MODERN PHYSICS LETTERS B (2024)

Article Physics, Applied

Effective elastic properties of one-dimensional hexagonal quasicrystal composites with spring-type imperfect interfaces

Lu Li, Xinpei Li, Lianhe Li

Summary: This study systematically investigates the effective elastic properties of 1D hexagonal quasicrystal (QC) with spring-type imperfect interfaces. The numerical results show that the presence of imperfect interfaces reduces the effective elastic constants to some extent, indicating the important role played by the interface in the elastic properties of QC composites.

MODERN PHYSICS LETTERS B (2024)

Article Physics, Applied

Criteria sensitive analysis of transport critical current density in BZO mixed YBCO

Probhu Mandal, Ajay Kumar Ghosh

Summary: In this paper, we have extracted the transport critical current density (Jc) of BaZrO3 added YBa2Cu3O7-delta by using several low electric field criteria. The temperature dependence of Jc and JcG is strongly affected by the choice of electric field criteria, especially at lower temperatures. We have also studied how different criteria may change the extraction of associated coefficients and found that the extrapolated Jc and JcG are highly sensitive to the criteria used.

MODERN PHYSICS LETTERS B (2024)

Article Physics, Applied

Analysis of the mechanism of the effect of N-H-O impurities on diamond growth under HPHT

Zhenghao Cai, Zhiwen Wang, Hongyu Zhao, Ming Li, Bowei Li, Liangchao Chen, Hongan Ma, Xiaopeng Jia

Summary: In this study, the growth characteristics and surface growth process of diamond crystals were further investigated by controlling the impurity content. The results showed that the spontaneous nucleation rate, growth characteristics, and impurity concentration of diamond crystals were significantly affected by the introduction of impurities. The presence of impurities blocked the mutual diffusion between the metal solvent and carbon source, resulting in a decrease in the growth rate of diamond crystals and hindering the surface processes of diamond growth.

MODERN PHYSICS LETTERS B (2024)

Article Physics, Applied

The improvement of thermoelectric properties of SnSe by alkali metal doping

Ruizhi Yang, Yunkai Li, Wanpeng Lin, Jun Xu, Lige Wang, Jing Liu

Summary: Selenium selenide (SnSe) has gained attention for its environmental friendliness and low thermal conductivity. Single-crystal SnSe has high thermoelectric properties but is mechanically weak and difficult to manufacture, making it not suitable for commercial usage. Polycrystalline SnSe is easier to synthesize but has poor thermoelectric performance. In this study, polycrystalline SnSe samples are prepared using hydrothermal synthesis combined with vacuum sintering, and their thermoelectric properties are modified through alkali metal element doping.

MODERN PHYSICS LETTERS B (2024)

Article Physics, Applied

First-principles study of structural, electronic and optoelectronic properties of Ag-doped Cu2O alloys: TB-mBJ insights

Mohammed El Amine Monir, Hadj Baltach, Ibtisam F. Al-Maaitah, A. F. Al-Maaitah, Amel Laref

Summary: The structural, electronic and optical properties of Cu2(1-x)Ag2xO alloys were investigated using density functional theory. The compounds were found to be semiconductors based on the equilibrium lattice parameters and electronic structure calculations. Additionally, the optical properties were calculated.

MODERN PHYSICS LETTERS B (2024)

Article Physics, Applied

Phase transition behaviors of Al nanoparticles with low oxidation degree: A molecular dynamics study

Yi Liu, Jiangtao Xu, Pingan Liu

Summary: In this study, the melting and annealing behaviors of aluminum nanoparticles were simulated using the ReaxFF reactive force field. The physical properties of aluminum and aluminum oxide were effectively reflected in the simulations. The presence of an oxide layer has an impact on the annealing behavior.

MODERN PHYSICS LETTERS B (2024)

Article Physics, Applied

Control of magnetic dissipation and radiation on an unsteady stagnation point nanofluid flow: A numerical approach

P. Chandini Pattanaik, S. Jena, S. R. Mishra

Summary: This study investigates the two-dimensional time-dependent flow of nanofluid over a permeable stretching or sinking sheet. The inclusion of a transverse magnetic field, magnetic dissipation, and thermal radiation enriches the flow phenomena. The use of nanofluids is of increasing importance in various industrial applications, as well as engineering and biomedicine.

MODERN PHYSICS LETTERS B (2024)

Article Physics, Applied

A study of heat and mass transfer flow of a variable viscosity couple stress fluid between inclined plates

Muhammad Farooq, Hijaz Ahmad, Dilber Uzun Ozsahin, Alamgeer Khan, Rashid Nawaz, Bandar Almohsen

Summary: This paper investigates the Poiseuille flow of non-isothermal couple stress fluid of Reynolds model between two heated parallel inclined plates using the AHPM and OHAM-DJ methods. The approximate solutions for various flow properties are obtained and compared, showing excellent resemblance between the two methods.

MODERN PHYSICS LETTERS B (2024)

Article Physics, Applied

A newly proposed full Heusler alloy Ir2VZ(Z=Sn, In) suitable for high-temperature thermoelectric applications: A DFT approach

Shyam Lal Gupta, Sumit Kumar, Samjeet Singh Anupam, Samjeet Singh Thakur, Sanjay Panwar, Diwaker

Summary: This study investigates the structural, electronic, mechanical, and thermoelectric properties of the iridium-based Heusler alloys Ir2V (In, Sn). The alloys exhibit half-metallic behavior, with large magnetic moments and mechanical stability, making them promising candidates for high-temperature thermoelectric applications.

MODERN PHYSICS LETTERS B (2024)