4.4 Article

A simplified methodology to identify material parameters of a hyperelasto-visco-hysteresis model: application to a fluoro-elastomer

出版社

IOP Publishing Ltd
DOI: 10.1088/0965-0393/19/8/085004

关键词

-

向作者/读者索取更多资源

This paper presents a method to identify material parameters of a hyperelasto-visco-hysteresis (HVH) model and its application for the simulation of a fluoroelastomer behaviour. This 3D-phenomenological model is based on the additive decomposition of three stress components. Each of these constitutive stresses is related to a physical phenomenon that occurs during mechanical loading: a hyperelastic equilibrium stress response, an irreversible pure hysteresis stress contribution and a rate-dependent viscoelastic stress behaviour. In order to independently identify these parts of the model, an experimental campaign, including multi-step relaxation in traction and compression tests and simple relaxation in tension and compression tests, is used. The hysteretic and hyperelastic contributions are identified considering only the state at the end of the relaxation periods of the multi-step relaxation tests. The viscoelastic response is analytically calculated with the simple relaxation test. As an advantage, the developed identification scheme gives the possibility to discriminate all the stress components of the model. Finally, the numerical simulation of a seal in relaxation is carried out to verify the capability of the proposed HVH model by reproducing the mechanical response of the studied material.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据