4.4 Article

Blockade of vascular endothelial growth factor sensitizes tumor-associated vasculatures to angiolytic therapy with a high-frequency ultrashort pulsed laser

期刊

MICROVASCULAR RESEARCH
卷 82, 期 2, 页码 141-146

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.mvr.2011.04.010

关键词

-

资金

  1. Korean government [KI001889]

向作者/读者索取更多资源

Because of high spatial resolution and superior tissue penetration, a femtosecond laser of the near-infrared spectrum has great potential to improve the efficacy of conventional photodynamic therapy; however, the lack of suitable photosensitizers has so far limited its bedside applications. Recently, our group reported that a brief irradiation by femtosecond lasers in the absence of exogenous probes can modulate various cellular behaviors in vitro and in vivo. Here, we demonstrate that targeted irradiation by a femtosecond laser disrupted tumor-associated blood vessels, and the inhibition of vascular endothelial growth factor signaling augmented the efficacy of laser-induced angiolysis. Further, we show that reactive oxygen species (ROS) are generated in response to laser irradiation, and reducing the intracellular levels of ROS rendered endothelial cells resistant to laser-induced cytotoxicity. Collectively, these results indicate that a femtosecond laser can be used as a vascular-disrupting therapeutic modality for cancer treatment, especially when used in combination with conventional anti-angiogenic therapies. (C) 2011 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据