4.4 Article

Electrical coupling of mammalian neurons to microelectrodes with 3D nanoprotrusions

期刊

MICROELECTRONIC ENGINEERING
卷 111, 期 -, 页码 384-390

出版社

ELSEVIER
DOI: 10.1016/j.mee.2013.03.152

关键词

Neurophysiology; Beam induced deposition; Cell engulfment

向作者/读者索取更多资源

Ion Beam Induced Deposition (IBID) is employed to fabricate three-dimensional nanoprotrusions on top of the recording pads of an active pixel sensor array (APS-MEA) featuring 4096 microelectrodes. Modified APS-MEAs are envisioned as enhanced tools to achieve real-time in-cell recordings from thousands of sensing elements, thus aiming to large-scale in-vitro registrations with unprecedented signal quality. A generalized electric model is proposed to address the revealed complexity of the neuron/electrode interface, and simulations have been conducted revealing the most advantageous cell/electrode coupling conditions. Preliminary results on the recording of spontaneous activity in cultured neuronal networks by means of nanostructured microelectrodes demonstrate the compatibility of IBID technology and APS-MEA infrastructure. The interface between cultured mammalian neurons and modified microelectrodes is revealed by FIB/SEM analysis, fostering the employment of the proposed electrical model for interpretation of electrical recordings from nanostructured microelectrodes. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据