4.2 Article

Role of oxyRKP, a novel LysR-family transcriptional regulator, in antimicrobial resistance and virulence in Klebsiella pneumoniae

期刊

MICROBIOLOGY-SGM
卷 159, 期 -, 页码 1301-1314

出版社

SOC GENERAL MICROBIOLOGY
DOI: 10.1099/mic.0.065052-0

关键词

-

资金

  1. Department of Biotechnology [BT/01/IYBA/2009]
  2. CSIR
  3. DBT
  4. UGC

向作者/读者索取更多资源

Klebsiella pneumoniae is a Gram-negative bacillus that causes serious infections in immunocompromised human hosts and exhibits significant multidrug resistance. In this study, we identified a novel lysR-family regulator (designated oxyR(KP)) in the genome of K. pneumoniae NTUH-K2044 whose functions have remained enigmatic so far. Functional characterization of the putative lysR regulator oxyR(KP) with respect to cellular physiology and antimicrobial susceptibility was performed by generating an isogenic mutant, Delta oxyR(KP) in a hypervirulent clinical isolate of K. pneumoniae. The K. pneumoniae oxyR(KP) mutant was sensitive to hyperosmotic and bile conditions. Disruption of oxyR(KP) increased the susceptibility of K. pneumoniae to oxidative (0.78947 mM hydrogen peroxide) and nitrosative (30 mM acidified nitrite) stress by similar to 1.4-fold and similar to 10-fold, respectively. Loss of the Klebsiella regulator led to a decrease in the minimum inhibitory concentrations for chloramphenicol (10-fold), erythromycin (6-fold), nalidixic acid (>50-fold) and trimethoprim (10-fold), which could be restored following complementation. The relative change in expression of resistance nodulation cell division super family (RND) efflux gene acrB was decreased by approximately fivefold in the oxyR(KP) mutant as evidenced by qRT-PCR. In a Caenorhabditis elegans model, the oxyR(KP) mutant exhibited significantly (P<0.01) lower virulence. Overall, results detailed in this report reflect the pleiotropic role of the oxyR(KP) signalling system and diversity of the resistance determinants in hypervirulent K1 serotype K. pneumoniae NTUH-K2044.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据