4.2 Article

Repression of N-glycosylation triggers the unfolded protein response (UPR) and overexpression of cell wall protein and chitin in Aspergillus fumigatus

期刊

MICROBIOLOGY-SGM
卷 157, 期 -, 页码 1968-1979

出版社

MICROBIOLOGY SOC
DOI: 10.1099/mic.0.047712-0

关键词

-

资金

  1. National Natural Science Foundation of China [31030025, 31011130030]

向作者/读者索取更多资源

Aspergillus fumigatus is the most common airborne fungal pathogen, causing fatal invasive aspergillosis in immunocompromised patients. The crude mortality is 60-90% and remains around 29-42% even with treatment. The main reason for patient death is the low efficiency of the drug therapies. As protein N-glycosylation is involved in cell wall biogenesis in A. fumigatus, a deeper understanding of its role in cell wall biogenesis will help to develop new drug targets. The Afstt3 gene encodes the essential catalytic subunit of oligosaccharyltransferase, an enzyme complex responsible for the transfer of the N-glycan to nascent polypeptides. To evaluate the role of N-glycosylation in cell wall biosynthesis, we constructed the conditional mutant strain CPR-stt3 by replacing the endogenous promoter of Afstt3 with the nitrogen-dependent niiA promoter. Repression of the Afstt3 gene in the CPR-stt3 strain led to a severe retardation of growth and a slight defect in cell wall integrity (CWI). One of the most interesting findings was that upregulation of the cell wall-related genes was not accompanied by an activation of the MPkA kinase, which has been shown to be a central element in the CWI signalling pathway in both Saccharomyces cerevisiae and A. fumigatus. Considering that the unfolded protein response (UPR) was found to be activated, which might upregulate the expression of cell wall protein and chitin, our data suggest that the UPR, instead of the MpkA-dependent CWI signalling pathway, is the major compensatory mechanism induced by repression but not abolition of N-glycosylation in A. fumigatus. Our finding is a key to understanding the complex compensatory mechanisms of cell wall biosynthesis and may provide a new strategy for drug development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据