4.7 Article

Succession in Stream Biofilms is an Environmentally Driven Gradient of Stress Tolerance

期刊

MICROBIAL ECOLOGY
卷 62, 期 2, 页码 414-424

出版社

SPRINGER
DOI: 10.1007/s00248-011-9879-7

关键词

-

资金

  1. UT Arlington Research Enhancement Grant [14-7487-30]
  2. Norman Hackerman Advanced Research Program [003656-0054-2009]
  3. Environmental Protection Agency [F6E61489]
  4. EPA [910590, F6E61489] Funding Source: Federal RePORTER

向作者/读者索取更多资源

The century-long research on succession has bestowed us with a number of theories, but little agreement on what causes species replacements through time. The majority of studies has explored the temporal trends of individual species in plant and much less so in microbial communities, arguing that interspecific interactions, especially competition, play a key role in community organization throughout succession. In this experimental investigation of periphytic succession in re-circulating laboratory streams, we examined the density and the relative abundance of diatoms and soft algae for 35 days across gradients of low to high nutrient supply (nitrogen + phosphorus) and low to intermediate current velocity (10 vs. 30 cm center dot s(-1)). All algal species were classified into trophic groups and morphological guilds, both of which responded more strongly to nutrient than current velocity manipulations, as shown by regression analyses. We concluded that within the manipulated environmental ranges: (1) Succession was a gradient of stress tolerance, driven primarily by nutrient supply and secondarily, by current velocity. Nutrient supply had a qualitative effect in determining whether the contribution of species tolerant vs. sensitive to nutrient limitation would increase through time, while current velocity had a quantitative influence and affected only the rate of this increase. (2) The mechanism of algal succession at a functional level was a neutral coexistence, whereby the tolerant low profile guild maintained high density when overgrown by sensitive species, while sensitive species, constituting mostly the motile and high profile guilds, were neither facilitated nor inhibited by tolerant species but controlled by the environment. It is suggested that the mechanism of succession may depend on the level of biological organization with interspecific interactions giving way to neutral coexistence along the hierarchy from species to functional groups. Considering that the functional makeup is strictly environmentally defined, while species composition reflects local and regional species pools that may exhibit substantial geographic variability, succession is deterministic at a functional level but stochastic at a species level.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据