4.6 Article

Creep-Environment Interactions in Dwell-Fatigue Crack Growth of Nickel Based Superalloys

出版社

SPRINGER
DOI: 10.1007/s11661-014-2199-z

关键词

-

资金

  1. MAI (Metals Affordability Initiative) [FA8650-08-2-5247]
  2. Air Force Research Lab, Pratt & Whitney, GE Aviation, Georgia Institute of Technology
  3. Ohio State University

向作者/读者索取更多资源

A multi-scale, mechanistic model is developed to describe and predict the dwell-fatigue crack growth rate in the P/M disk superalloy, ME3, as a function of creep-environment interactions. In this model, the time-dependent cracking mechanisms involve grain boundary sliding and dynamic embrittlement, which are identified by the grain boundary activation energy, as well as, the slip/grain boundary interactions in both air and vacuum. Modeling of the damage events is achieved by adapting a cohesive zone (CZ) approach which considers the deformation behavior of the grain boundary element at the crack tip. The deformation response of this element is controlled by the surrounding continuum in both far field (internal state variable model) and near field (crystal plasticity model) regions and the intrinsic grain boundary viscosity which defines the mobility of the element by scaling up the motion of dislocations into a mesoscopic scale. This intergranular cracking process is characterized by the rate at which the grain boundary sliding reaches a critical displacement. A damage criterion is introduced by considering the grain boundary mobility limit in the tangential direction leading to strain incompatibility and failure. Results of simulated intergranular crack growth rate using the CZ model are generated for temperatures ranging from 923 K to 1073 K (650 A degrees C to 800 A degrees C), in both air and vacuum. These results are compared with those experimentally obtained and analysis of the model sensitivity to loading conditions, particularly temperature and oxygen partial pressure, are presented.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据