4.6 Article

Crystal Plasticity Finite Element Method Simulations for a Polycrystalline Ni Micro-Specimen Deformed in Tension

出版社

SPRINGER
DOI: 10.1007/s11661-014-2556-y

关键词

-

资金

  1. U.S. Air force [FA8650-10-D-5226]
  2. Pusan National University
  3. AFOSR [FA9550-10-1-0213]

向作者/读者索取更多资源

A micro-tensile test system equipped with in situ monitoring of the in-plane displacements of a surface and an electron backscattered diffraction-based serial-sectioning technique were used to study the deformation (up to 2.4 pct axial plastic strain in tension) of a polycrystalline nickel micro-specimen. The experimental data include the global engineering stress-engineering strain curve, the local mesoscopic in-plane displacement and strain fields, the three-dimensional microstructure of the micro-specimen reconstructed after the tensile test, and the kernel-average misorientation distribution. The crystal plasticity finite element method using elasto-viscoplastic constitutive formulations was used to simulate the global and local deformation responses of the micro-specimen. Three different boundary conditions (BCs) were applied in simulation in order to study the effects of the lateral displacement (perpendicular to the loading direction) of the top and bottom faces of the specimen gage section. The simulation results were compared to the experimental results. The comparison between experiment and simulation results is discussed, based upon their implications for understanding the deformation of micro-specimens and the causes associated with uncertainties embedded in both experimental and numerical approaches. Also, the sensitivity of BCs to near-field and far-field responses of the micro-specimen was systematically studied. Results show that the experimental methodology used in the present study allows for limited but meaningful comparisons to crystal plasticity finite element simulations of the micro-specimen under the small plastic deformation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据