4.6 Article

The Effect of Chemical Composition and Heat Treatment Conditions on Stacking Fault Energy for Fe-Cr-Ni Austenitic Stainless Steel

出版社

SPRINGER
DOI: 10.1007/s11661-013-1943-0

关键词

-

资金

  1. Tokyo Electric Power Company
  2. JSPS KAKENHI [22360396]
  3. Grants-in-Aid for Scientific Research [22360396] Funding Source: KAKEN

向作者/读者索取更多资源

In order to establish more reliable formulae for calculating stacking fault energies (SFE) from the chemical compositions of austenitic stainless steels, SFE values were measured for 54 laboratory-melted heats and 2 commercial heats. The results were checked against those of a first-principle, atomistic calculation approach. More than similar to 20,000 data points for the width and angle of the Burgers vectors were determined from dark-field images of isolated extended dislocations in 56 heats of austenitic stainless steel using weak electron beams with g-3g diffraction conditions. Based on these numerous observations and on fundamental thermodynamic analyses, it is concluded that the SFE values for austenitic stainless steels are changed not only by chemical composition but also by heat treatment. In this paper, new formulae for calculating SFE values from the chemical compositions in three different heat treatment conditions have been proposed for austenitic stainless steels within given limited chemical composition ranges. In these formulae, the SFE values are calculated from the nickel, chromium, molybdenum, silicon, manganese, nitrogen, and carbon contents for the each heat treatment condition. The three heat treatment conditions studied were water cooling after solution heat treating (SHTWC), furnace cooling after solution heat treating, and aging after SHTWC. (c) The Minerals, Metals & Materials Society and ASM International 2013

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据