4.4 Article

Rice-Arabidopsis FOX line screening with FT-NIR-based fingerprinting for GC-TOF/MS-based metabolite profiling

期刊

METABOLOMICS
卷 6, 期 1, 页码 137-145

出版社

SPRINGER
DOI: 10.1007/s11306-009-0182-2

关键词

FT-NIR; GC-TOF/MS; FOX hunting system; Rice; Arabidopsis; Metabolomics; O2PLS

资金

  1. Special Coordination Fund for Promoting Science and Technology (Japan Science and Technology Agency)

向作者/读者索取更多资源

The full-length cDNA over-expressing (FOX) gene hunting system is useful for genome-wide gain-of-function analysis. The screening of FOX lines requires a high-throughput metabolomic method that can detect a wide range of metabolites. Fourier transform-near-infrared (FT-NIR) spectroscopy in combination with the chemometric approach has been used to analyze metabolite fingerprints. Since FT-NIR spectroscopy can be used to analyze a solid sample without destructive extraction, this technique enables untargeted analysis and high-throughput screening focusing on the alteration of metabolite composition. We performed non-destructive FT-NIR-based fingerprinting to screen seed samples of 3000 rice-Arabidopsis FOX lines; the samples were obtained from transgenic Arabidopsis thaliana lines that overexpressed rice full-length cDNA. Subsequently, the candidate lines exhibiting alteration in their metabolite fingerprints were analyzed by gas chromatography-time-of-flight/mass spectrometry (GC-TOF/MS) in order to assess their metabolite profiles. Finally, multivariate regression using orthogonal projections to latent structures (O2PLS) was used to elucidate the predictive metabolites obtained in FT-NIR analysis by integration of the datasets obtained from FT-NIR and GC-TOF/MS analyses. FT-NIR-based fingerprinting is a technically efficient method in that it facilitates non-destructive analysis in a high-throughput manner. Furthermore, with the integrated analysis used here, we were able to discover unique metabotypes in rice-Arabidopsis FOX lines; thus, this approach is beneficial for investigating the function of rice genes related to metabolism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据