4.7 Article

Two-stage transcriptional reprogramming in Saccharomyces cerevisiae for optimizing ethanol production from xylose

期刊

METABOLIC ENGINEERING
卷 24, 期 -, 页码 150-159

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ymben.2014.05.001

关键词

Xylose; Xylose reductase; Two stage transcription reprogramming; Ethanol; Saccharomyces cerevisiae

资金

  1. Capital Normal University [11530470709, 12530530209]

向作者/读者索取更多资源

Conversion of lignocellulosic material to ethanol is a major challenge in second generation bio-fuel production by yeast Saccharomyces cerevisiae. This report describes a novel strategy named two-stage transcriptional reprogramming (TSTR) in which key gene expression at both glucose and xylose fermentation phases is optimized in engineered S. cerevisiae. Through a combined genome-wide screening of stage-specific promoters and the balancing of the metabolic flux, ethanol yields and productivity from mixed sugars were significantly improved. In a medium containing 50 g/L glucose and 50 g/L xylose, the top-performing strain WXY12 rapidly consumed glucose within 12 h and within 84 h it consistently achieved an ethanol yield of 0.48 g/g total sugar, which was 94% of the theoretical yield. WXY12 utilizes a KGD1 inducible promoter to drive xylose metabolism, resulting in much higher ethanol yield than a reference strain using a strong constitutive PGK1 promoter. These promising results validate the TSTR strategy by synthetically regulating the xylose assimilation pathway towards efficient xylose fermentation. Crown Copyright (C) 2014 Published by Elsevier Inc. on behalf of International Metabolic Engineering Society. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据