4.7 Article

On metabolic shift to lactate consumption in fed-batch culture of mammalian cells

期刊

METABOLIC ENGINEERING
卷 14, 期 2, 页码 138-149

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ymben.2011.12.006

关键词

Lactate consumption; Glycolysis; Metabolic model; MFA; AKT1; P53

向作者/读者索取更多资源

Fedbatch culture is the prevalent cell cultivation method in producing protein therapeutics. A metabolic shift to lactate consumption in late stage of cultivation has been shown to extend the culture viability and increase product concentrations. To better understand the factors, which trigger metabolic shift we performed transcriptome and metabolic flux analysis on a fedbatch culture of mouse myeloma cell line (NS0) and developed a mechanistic kinetic model for energy metabolism. Experimental observation indicates that the shift to lactate consumption occurs upon the cessation of rapid growth and under conditions of low glycolysis flux and high extracellular lactate concentrations. Although the transition is accompanied by a general down regulation of enzymes in energy metabolism, that alone was insufficient to elicit a metabolic shift. High lactate level has been reported to exert an inhibitory effect on glycolysis enzyme phosphofructokinase; model simulation suggests that a high lactate level can contribute to reduced glycolytic flux as well as providing a driving force for its conversion to pyruvate. The transcriptome data indicate that moderate alteration in the transcript levels of AKT1 and P53 signaling pathways genes occurs in the late stage of culture. These signaling pathways are known to regulate glycolytic activity. Model simulations further suggest that AKT1 signaling plays a key role in facilitating lactate consumption. Collectively, our results strongly suggest that lactate consumption in fedbatch culture is an outcome of reduced glycolysis flux, which is a product of lactate inhibition and regulatory action of signaling pathway caused by reduced growth rate. (C) 2012 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Biotechnology & Applied Microbiology

Model-based optimization of cell-free enzyme cascades exemplified for the production of GDP-fucose

Nicolas Huber, Edgar Alberto Alcala-Orozco, Thomas Rexer, Udo Reichl, Steffen Klamt

Summary: Cell-free production systems are commonly used for synthesizing industrial chemicals and biopharmaceuticals. This study presents a model-based optimization framework for cell-free enzyme cascades, taking into account parameter uncertainties. The approach was exemplified using the synthesis of GDP-fucose, resulting in significant improvements in the process.

METABOLIC ENGINEERING (2024)