4.5 Article

Hypoxic damage to pancreatic beta cells - The hidden link between sleep apnea and diabetes

期刊

MEDICAL HYPOTHESES
卷 77, 期 5, 页码 930-934

出版社

CHURCHILL LIVINGSTONE
DOI: 10.1016/j.mehy.2011.08.016

关键词

-

资金

  1. European Respiratory Society [LTRF 15-2008]
  2. National Institutes of Health

向作者/读者索取更多资源

Despite a large body of epidemiologic and clinical evidence suggesting that sleep disordered breathing is an independent risk factor for development of type 2 diabetes (T2DM), the underlying pathogenesis of altered glucose metabolism in sleep apnea remains to be unraveled. While previous studies have proposed some causal pathways linking sleep apnea with 12DM through increased insulin resistance and deterioration in insulin sensitivity, there has been a particular lack of research into sleep apnea-related alterations in pancreatic beta-cell function. Drawing upon our previous observation that sleep apnea is independently associated with an increased basal pancreatic beta-cell function in adults with normal glucose metabolism [1], the idea presented here suggests that sleep apnea imposes an excessive demand for insulin secretion, which may lead to progressive pancreatic beta-cell failure in high-risk individuals. Specifically, we hypothesize that in addition to diabetogenic effects of acute hypoxic activation of the sympathetic nervous system, the chronic intermittent hypoxemia represses the expression of key genes regulating biosynthesis of pancreatic proinsulin convertases with a resultant progressive decrease in their catalytic activity. The long-term hypoxic damage to pancreatic beta-cells may thus contribute to progression of glucose dysregulation in persons with untreated sleep apnea over time. Strategies to prevent and decrease the high prevalence and associated morbidity of 12DM are critically needed. The ideas and hypotheses presented here address the unexplored pathophysiological mechanisms underlying the potential causal link between sleep apnea and 12DM. Future hypotheses-testing will seek to delineate the role of sleep apnea in the development of 12DM, probe the underlying molecular mechanisms for pancreatic beta-cell dysfunction in sleep apnea, and obtain information on clinical, epidemiologic, and other factors responsible for protecting individuals from alterations in insulin-glucose homeostasis. These results could further be utilized in testing genetic susceptibilities and various therapy modalities to prevent pancreatic beta-cell dysfunction and maintain normal glucose status in persons with sleep apnea in the long term. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据