4.4 Article

The important roles of tissue anisotropy and tissue-to-tissue contact on the dynamical behavior of a symmetric tri-leaflet valve during multiple cardiac pressure cycles

期刊

MEDICAL ENGINEERING & PHYSICS
卷 35, 期 1, 页码 23-35

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.medengphy.2012.03.006

关键词

Aortic valve; Fiber-anisotropy; Tri-leaflet model; Soft-tissue; Tissue-to-tissue contact

向作者/读者索取更多资源

Restricting our scope to the dynamical motion of the leaflets, we present a computational model for a symmetric, tri-leaflet, bioprosthetic heart valve (BHV) at the end of five complete cardiac pressure cycles, reaching the steady state of deformation during both closing and opening phases. To this end, we utilized a highly anisotropic material model for the large deformation behavior of the tissue material, for which an experimental validation was provided. The important findings are: (1) material anisotropy has significant effect on the valve opening/closing; (2) the asymmetric deformations, especially in the fully closed configuration, justify the use of cyclic symmetry; (3) adopting the fully-open position as an initial/reference configuration has the advantage of completely bypassing any complications arising from the need to assume the size and shape of the contact area in the coaptation regions of the leaflets that is necessary when the alternative, commonly-used, approach of selecting the fully-closed position is used as a reference; and (4) with proper treatments for both material anisotropy and tissue-to-tissue contact, the overall BHV model provide realistic results in conformity with the ex vivo/in vitro experiments. (c) 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据