4.2 Article

Nanos1 functions as a translational repressor in the Xenopus germline

期刊

MECHANISMS OF DEVELOPMENT
卷 128, 期 1-2, 页码 153-163

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.mod.2010.12.001

关键词

Xenopus; Nanos1/Xcat2; Germline determination; Translational repression

资金

  1. NIH [GM33932]
  2. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [R01GM102397, R01GM033932] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Nanos family members have been shown to act as translational repressors in the Drosophila and Caenorhabditis elegans germline, but direct evidence is missing for a similar function in vertebrates. Using a tethered function assay, we show that Xenopus Nanos1 is a translational repressor and that association with the RNA is required for this repression. We identified a 14 amino acid region within the N-terminal domain of Nanos1 that is conserved in organisms as diverse as sponge and Human. The region is found in all vertebrates but notably lacking in Drosophila and C. elegans. Deletion and substitution analysis revealed that this conserved region was required for Nanos1 repressive activity. Consistent with this observation, deletion of this region was sufficient to prevent abnormal development that results from ectopic expression of Nanos1 in oocytes. Although Nanos1 can repress capped and polyadenylated RNAs, Nanos1 mediated repression did not require the targeted RNA to have a cap or to be polyadenylated. These results suggest that Nanos1 is capable of repressing translation by several different mechanisms. We found that Nanos1, like Drosophila Nanos, associates with cyclin B1 RNA in vivo indicating that some Nanos targets may be evolutionarily conserved. Nanos1 protein was detected and thus available to repress mRNAs while PGCs were in the endoderm, but was not observed in PGCs after this stage. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据