4.7 Article

General approach for inverse kinematics of nR robots

期刊

MECHANISM AND MACHINE THEORY
卷 75, 期 -, 页码 97-106

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.mechmachtheory.2014.01.008

关键词

nR serial robots; Inverse kinematics; Conformal space geometry; Gradient projection method

资金

  1. National Natural Science Foundation [51205074]
  2. Specialized Research Fund for the Doctoral Program of Higher Education [20112304120007]
  3. Postdoctoral Foundation of Heilongjiang Province [LBH-Q10129]
  4. Harbin Specialized Research Foundation for Innovation Talents [RC2012QN009037]
  5. Fundamental Research Funds for the Central Universities [HEUCF041405]

向作者/读者索取更多资源

Usually finding the method to use to solve the inverse kinematics of a nR robot is a difficult problem as no effective analytic method has been identified so far. This article uses a semi-analytic method and a general method to solve the spatial nR robot inverse kinematics problem. It overcomes the numerical method's limitations related to accuracy with a real-time aspect. Initially, conformal geometric space theory was used to establish general kinematic equations. Based on that, the weighted space vector projection method was used to analyze the relationship between the robot spatial rotation angles and the value of the space vector projection. The weighted value of every joint's projection on the end-effector vector was treated as the basis for changing the robot end's orientation. By determining the weighted value of every joint's projection on the end-effector vector, it was possible to achieve the semi-analytic inverse kinematic solution. Finally, to prove the validity and feasibility of the theory it was tested with a special 6R robot. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Engineering, Marine

Ocean Wave Active Compensation Analysis for Redundant Hybrid Boarding System: A Multi-Task Motion Planning Method

Yueyue Wang, Yanhui Wei, Weihang Gao, Tianyu Ma, Yuntao Han

Summary: In this paper, a multi-task motion planning (MTMP) method is proposed to address the joint motion planning problem of a nine-DOF redundant hybrid boarding system in ocean wave active compensation. The hybrid mechanism is divided into a six-DOF parallel mechanism and a three-DOF serial mechanism for kinematic analysis, and the Jacobian matrix in the task space is obtained. Several secondary tasks are introduced to constrain the motion planning of the hybrid mechanism based on its configuration characteristics. Simulations and comparisons demonstrate that the MTMP method effectively solves the limitations and issues in joint motion planning.

JOURNAL OF MARINE SCIENCE AND ENGINEERING (2023)

Proceedings Paper Engineering, Mechanical

Bond Graph Modeling and Simulating of 3 RPR Planar Parallel Manipulator

Cheng Yin, Shengqi Jian, Md. Hassan Faghih, Md. Toufiqul Islam, Luc Rolland

ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2014, VOL 4B (2015)

Proceedings Paper Automation & Control Systems

FIVE BAR PLANAR MANIPULATOR SIMULATION AND ANALYSIS BY BOND GRAPH

Shengqi Jian, Cheng Yin, Luc Rolland, Lesley James

PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2014, VOL 4A (2015)

Article Engineering, Mechanical

Model predictive control for multimode power-split hybrid electric vehicles: Parametric internal model with integrated mode switch and variable meshing losses

Antonella Castellano, Pietro Stano, Umberto Montanaro, Marco Cammalleri, Aldo Sorniotti

Summary: This paper proposes a new control strategy for hybrid electric vehicles, called Model Predictive Control (MPC), and considers the losses in transmission gears. Through a case study on Chevrolet Volt, the results show that the simplified internal model has a minor impact on fuel consumption performance.

MECHANISM AND MACHINE THEORY (2024)

Article Engineering, Mechanical

Morphable thick-panel origami

Rui Peng, Gregory S. Chirikjian

Summary: This article introduces a method of designing morphable thick-panel origami structures using reconfigurable linkages, which improves the potential of origami techniques for different tasks and solves the limitations of one-DOF and multiple-DOF folding structures.

MECHANISM AND MACHINE THEORY (2024)

Article Engineering, Mechanical

Extension of transmission performance evaluation for planar higher pair mechanisms

Gaohan Zhu, Weizhong Guo, Yinghui Li, Youcheng Han

Summary: Comprehensive and accurate performance evaluation is crucial for profile synthesis and analysis of higher pair mechanisms. This paper proposes evaluation indices and methods for the transmission performance of planar higher pair mechanisms from different perspectives. It subdivides the transmission performance into element-based performance and joint-based performance and develops novel indices specific to higher pair mechanisms. A graphical mapping method based on element-based performance is also proposed for intuitive analysis. Practical examples validate the effectiveness of the proposed indices and methods for evaluating the performance of higher pair mechanisms.

MECHANISM AND MACHINE THEORY (2024)

Article Engineering, Mechanical

A Body-frame Beam Constraint Model

Ke Wu, Gang Zheng, Guimin Chen, Shorya Awtar

Summary: Researchers proposed a new modeling method, namely Body-frame Beam Constraint Model (BBCM), to predict and optimize the design of high-precision compliant mechanisms (CMs).

MECHANISM AND MACHINE THEORY (2024)

Article Engineering, Mechanical

Updating structural synthesis methodology of mechanisms: from kinematic geometry to kinematic geometry accompanied with statics

Youcheng Han, Weizhong Guo, Changjie Zhao, Ziyue Li, Ze Fu, Yinghui Li

Summary: This study proposes a structural synthesis methodology that considers motion, force, and energy characteristics simultaneously to design efficient mechanisms.

MECHANISM AND MACHINE THEORY (2024)

Article Engineering, Mechanical

A parametric flexible multibody formulation with an explicit dependency on material properties

Cristian Enrico Capalbo, Daniel De Gregoriis, Tommaso Tamarozzi, Giuseppe Carbone, Domenico Mundo

Summary: This study proposes a novel flexible multibody formulation that enables efficient updating of models while maintaining small size and high accuracy. Numerical validation demonstrates its wide applicability across various materials and mechanisms, showing promising results in terms of accuracy.

MECHANISM AND MACHINE THEORY (2024)

Article Engineering, Mechanical

A novel design of series elastic actuator using tensile springs array

Weihao Zhao, Junbei Liao, Wei Qian, Haoyong Yu, Zhao Guo

Summary: This paper presents a newly designed compliant actuator using a tensile springs array to address the challenges in achieving linear and consistent elastic properties, low friction, minor hysteresis, and good compliance in series elastic actuators (SEA). The unique geometry of the spring array enables the SEA to have consistent rotary stiffness with minimal friction and hysteresis. The device's performance is evaluated using PID and sliding mode control, demonstrating its constant low rotary stiffness and torque tracking bandwidth, making it suitable for human-robot interaction requirements.

MECHANISM AND MACHINE THEORY (2024)

Article Engineering, Mechanical

Normal contact stress analysis of large-deflection compliant mechanisms using a CPRBM-based method

Mohui Jin, Yukang Luo, Xing Xu, Bowei Xie, Weisheng Wang, Zewei Li, Zhou Yang

Summary: This paper presents a method for evaluating the contact interaction between compliant mechanisms and external objects. By establishing a numerical model and introducing contact springs to describe the contact forces, the deformation and normal contact force/stress can be accurately calculated. The static equilibrium configuration and contact force/stress can be obtained by minimizing the total potential energy function of the system.

MECHANISM AND MACHINE THEORY (2024)

Article Engineering, Mechanical

Synthesis of parallel flexure stages with decoupled actuators using sum, intersection, and difference of screw systems

Alejandro G. Gallardo, Martin A. Pucheta

Summary: This paper presents a method for the synthesis of parallel flexure systems using Screw Theory and Linear Algebra. The method is validated through three case studies and offers a simple and precise design with decoupled actuators.

MECHANISM AND MACHINE THEORY (2024)

Article Engineering, Mechanical

A two-step solution for robot-world calibration made intelligible by implementing Chasles' motion decomposition in Ad(SE(3))

Xiao Wang, Chenglin Liu, Haoxiang Sun, Hanwen Song

Summary: This paper presents a new decomposition mode for robot-world calibration, which decomposes the Ad(SE(3)) equation using Chasles' motion. A two-step method based on point set matching is proposed. The superiority of this method is verified through simulations and experiments.

MECHANISM AND MACHINE THEORY (2024)

Article Engineering, Mechanical

Error modeling and analysis of a spherical parallel mechanism with a multiloop circuit incremental method

Yanlin Chen, Xianmin Zhang, Yanjiang Huang, Yanbin Wu, Jun Ota

Summary: This study establishes an error model for a 3-RRR+UR spherical parallel mechanism and analyzes the sensitivity of error parameters. A design structure is proposed to reduce input errors based on the analysis. Experimental results show that the multiloop circuit incremental method provides more accurate results.

MECHANISM AND MACHINE THEORY (2024)

Article Engineering, Mechanical

Performance analysis of gravity-balanced serial robotic manipulators under dynamic loads

Vu Linh Nguyen, Chin-Hsing Kuo, Po Ting Lin

Summary: This paper presents a method for analyzing the performance of gravity-balanced serial robotic manipulators under dynamic loads and uses a three-degree-of-freedom planar serial manipulator as a case study. The significance of this method is demonstrated by evaluating the impact of dynamic loads on gravity-balanced performance and proposing a step-by-step design procedure to improve it.

MECHANISM AND MACHINE THEORY (2024)

Article Engineering, Mechanical

Sustainability-oriented dry cutting tool collaborative optimization model for face-hobbing hypoid gears

Shifeng Rong, Jiange Zhang, Xing Zhang, Keliang Li, Kaibin Rong, Zhenyu Zhou, Han Ding

Summary: This article proposes a data-driven dry cutting tool collaborative optimization model to improve the economic and environmental attributes of facehobbing hypoid gears. An innovative ease-off tooth contact analysis method is introduced to establish accurate relations between ease-off flank and loaded contact performance evaluations. The proposed model significantly improves sustainability in terms of economic and environmental assessments.

MECHANISM AND MACHINE THEORY (2024)

Article Engineering, Mechanical

Instantaneous kinematics of a planar two-link open chain in complex plane

Kemal Eren, Soley Ersoy, Ettore Pennestri

Summary: This research investigates the instantaneous kinematics of the terminal link of a planar two-link open chain using the complex-number technique and higher-order instantaneous invariants.

MECHANISM AND MACHINE THEORY (2024)

Article Engineering, Mechanical

Design and analysis of modular deployable antenna mechanism based on a class of self-limiting position units

Bo Han, Zhantu Yuan, Jiachuan Zhang, Yundou Xu, Jiantao Yao, Yongsheng Zhao

Summary: This paper proposes novel deployable mechanism units with self-limiting position function, and constructs ring truss deployable mechanisms. The degrees of freedom (DOF) of deployable units are analyzed and it is proved that the constructed ring truss deployable mechanisms have only one DOF. The dynamic model of the deployable mechanism unit with passive actuation is established and verified by simulation. The deployable mechanism units proposed in this paper have the advantages of good scalability and stability, and have broad application prospects.

MECHANISM AND MACHINE THEORY (2024)