4.7 Article

Nonlinear stability analysis of long hydrodynamic journal bearings using numerical continuation

期刊

MECHANISM AND MACHINE THEORY
卷 72, 期 -, 页码 17-24

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.mechmachtheory.2013.10.002

关键词

Long journal bearings; Nonlinear stability analysis; Hopf bifurcation; Bifurcation of limit cycles; Numerical continuation

向作者/读者索取更多资源

Hydrodynamic bearings are frequently used in applications involving high loads and high speeds. They may however be subjected to oil whirl instability which may cause their failure. For a successful application of fluid film bearings, it is essential to predict the stability boundaries in terms of the bearing characteristics as well as other nonlinear phenomena observed near the stability limits such as stable and unstable limit cycle motion, hysteresis and jumping phenomena. A model of a long balanced hydrodynamic journal bearing is considered in this paper. Numerical continuation is then used to predict the branch of the journal equilibrium point, the Hopf bifurcation point and the emerging stable or unstable limit cycles. Depending on the bearing characteristics, the stability threshold occurs either at a supercritical or at a subcritical Hopf bifurcation. For journal speeds above the supercritical bifurcation, the journal undergoes stable limit cycles. For the stability boundaries due to a subcritical bifurcation, a limit point of cycle bifurcation is found defining the domain of possible journal jumping from the equilibrium position to large limit cycles and hysteresis phenomenon during rotor speed variation near the stability threshold. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据