4.4 Article

Robustness of tuned mixing within a droplet for digital microfluidics

期刊

MECHANICS RESEARCH COMMUNICATIONS
卷 36, 期 1, 页码 130-136

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.mechrescom.2008.06.010

关键词

Digital microfluidics; Droplet; Stokes' flow; Chaotic mixing; Resonances; Control; Robustness

资金

  1. NSF [CrS-0626070, CTS-0626123, 0400370]
  2. RBRF [06-01-00117]
  3. Donors of the ACS Petroleum Research Fund
  4. Euratom-CEA [EUR 344-88-1 FUA F]
  5. CNRS

向作者/读者索取更多资源

The design of strategies to generate efficient mixing is crucial for a variety of applications, particularly digital microfluidic devices that use small discrete fluid volumes (droplets) as fluid carriers and microreactors. In recent work, we have presented an approach for the generation and control of mixing inside a translating spherical droplet. This was accomplished by considering Stokes' flow within a droplet proceeding downstream which is also subjected to time dependent (sinusoidal) rotation. The mixing obtained is the result of the stretching and folding of material lines which increase exponentially the surface contact between reagents. The mixing strategy relies on the generation of resonances between the steady and the unsteady part of the flow, which is achieved by tuning the parameters of the periodic rotation. Such resonances, in this system, offer the possibility of controlling both the location and the size of the mixing region within the droplet, which may be useful to manufacture inhomogeneous particles (such as Janus particles). While the period and amplitude of the periodic rotation play a major role. it is shown here by using a triangular function that the particular shape of the rotation (as a function of time) has a minor influence. This finding demonstrates the robustness of the proposed mixing strategy, a crucial point for its experimental realization. (C) 2008 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据