4.7 Article

Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm

期刊

MEASUREMENT
卷 47, 期 -, 页码 558-568

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.measurement.2013.09.031

关键词

MRI brain image; Entropy; Thresholds; Image segmentation; Real coded genetic algorithm

向作者/读者索取更多资源

Medical image analysis is one of the major research areas in the last four decades. Many researchers have contributed quite good algorithms and reported results. In this paper, real coded genetic algorithm with Simulated Binary Crossover (SBX) based multilevel thresholding is used for the segmentation of medical brain images. The T2 weighted Magnetic Resonance Imaging (MRI) brain images are considered for image segmentation. The optimum multilevel thresholding is found by maximizing the entropy. The results are compared with the results of the existing algorithms like Nelder-Mead simplex, PSO, BF and ABF. The statistical performances of the 100 independent runs are reported. The results reveal that the performance of real coded genetic algorithm with SBX crossover based optimal multilevel thresholding for medical image is better and has consistent performance than already reported methods. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据