4.4 Article

Quantifying Asymmetric Parameter Interactions in Sensitivity Analysis: Application to Reservoir Modeling

期刊

MATHEMATICAL GEOSCIENCES
卷 46, 期 4, 页码 493-511

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11004-014-9530-5

关键词

General sensitivity analysis; Parameter interaction; Reservoir modeling; Model classification

资金

  1. Streamsim/Stanford HM JIP
  2. Swiss National Science Foundation (ENSEMBLE project)
  3. Stanford Center for Reservoir Forecasting

向作者/读者索取更多资源

In this paper, a new generalized sensitivity analysis is developed with a focus on parameter interaction. The proposed method is developed to apply to complex reservoir systems. Most critical in many engineering applications is to find which model parameters and parameter combinations have a significant impact on the decision variables. There are many types of parameters used in reservoir modeling, e.g., geophysical, geological and engineering. Some parameters are continuous, others discrete, and others have no numerical value and are scenario-based. The proposed generalized sensitivity analysis approach classifies the response/decision variables into a limited set of discrete classes. The analysis is based on the following principle: if the parameter frequency distribution is the same in each class, then the model response is insensitive to the parameter, while differences in the frequency distributions indicate that the model response is sensitive to the parameter. Based on this simple idea, a new general measure of sensitivity is developed. This sensitivity measure quantifies the sensitivity to parameter interactions, and incorporates the possibility that these interactions can be asymmetric for complex reservoir modeling. The approach is illustrated using a case study of a West Africa offshore oil reservoir.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据