4.3 Article

Relationship between Microstructures and Tensile Properties of an Fe-30Mn-8.5Al-2.0C Alloy

期刊

MATERIALS TRANSACTIONS
卷 51, 期 6, 页码 1084-1088

出版社

JAPAN INST METALS
DOI: 10.2320/matertrans.M2010013

关键词

iron-manganese-aluminum-carbon alloy; spinodal decomposition; tensile test; lamellar structure; ductility

资金

  1. National Science Council, Republic of China [NSC97-2221-E-009-027-MY3]

向作者/读者索取更多资源

Owing to the presence of a large amount of fine (Fe,Mn)(3)AlC carbides within austenite (gamma) matrix, the tensile property of the Fe-30%Mn-85Al%-20%C (in mass%) alloy in the as-quenched condition was clearly superior to that of the as-quenched FeMnAlC (C <= 1 3%) alloys investigated by previous workers After being aged at 823 K for 3 h, the present alloy could possess high yield strength up to 1262 MPa with an excellent 32 5% elongation With almost equivalent ductility. the yield strength obtained was about 16% higher than that of the FeMnAlC (C <= 1 3%) alloys after solution heat-treatment or controlled-rolling followed by an optimal aging at 823 K Additionally, due to the pre-existing fine (Fe,Mn)(3)AlC carbides within the gamma matrix in the as-quenched alloy, the aging time required for attaining the optimal combination of strength and ductility was much less than that of the FeMnAlC (C <= 1 3%) alloys aged at 823 K When the present alloy was aged at 823 K for a time period longer than 4 h. both the strength and ductility were drastically dropped due to the occurrence of gamma(0)/kappa (gamma(0) carbon-deficient austenite) lamellar structure on the gamma/gamma gram boundaries [doi 10.2320/matertrans.M2010013]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据