4.5 Article

Electronic, elastic and optical properties of ZnGeP2 semiconductor under hydrostatic pressures

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.mseb.2013.11.020

关键词

ZnGeP2 semiconductor; DFT calculation; Electronic structure; Optical properties; Elastic constants

向作者/读者索取更多资源

The electronic, elastic and optical properties of zinc germanium phosphide, ZnGeP2, semiconductor have been studied using local density approximation (LDA) method within the density functional theory (DFT). The lattice constants (a and c), band structure, density of states (DOS), bulk modulus (B) and pressure derivative of bulk modulus (B') have been discussed. The value of pseudo-direct band gap (E-g) at Gamma point has been calculated. The pressure dependences of elastic stiffness coefficients (C-ij), Zener anisotropy factor (A), Poisson's ratio (v), Young modulus (Y) and shear modulus (G) have also been calculated. The ratio of B/G shows that that ZnGeP2 is ductile in nature. The optical properties have been discussed in detail under three different pressures in the energy range 0-22 eV. The calculated values of all parameters are compared with the available experimental values and the values reported by different workers. Reasonably good agreement has been obtained between them. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Physical

Electronic Structure and Optical Properties of Gallium-Doped Hybrid Organic-Inorganic Lead Perovskites from First-Principles Calculations and Spectroscopic Limited Maximum Efficiencies

Rishikanta Mayengbam, Ashutosh Srivastava, S. K. Tripathy, G. Palai

JOURNAL OF PHYSICAL CHEMISTRY C (2019)

Article Optics

Computation of PUG concentration in human blood using the combination of photonics and machine learning

I. S. Amiri, P. Yupapin, Bandana Mahapatra, Susanta Kumar Tripathy, G. Palai

Article Materials Science, Multidisciplinary

Structural, optoelectronic, and morphological study of indium-doped methylammonium lead chloride perovskites

Paramita Sarkar, Julaiba Mazumder, S. K. Tripathy, K. L. Baishnab, G. Palai

APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING (2019)

Article Optics

Realization of antireflection elements using glass-based photonic crystal structures

I. S. Amiri, Jafar A. Alzubi, S. K. Tripathy, G. Palai

Article Physics, Applied

Impact of Sn doping on methylammonium lead chloride perovskite: An experimental study

P. Sarkar, A. Srivastava, S. K. Tripathy, K. L. Baishnab, T. R. Lenka, P. S. Menon, F. Lin, A. G. Aberle

JOURNAL OF APPLIED PHYSICS (2020)

Article Engineering, Electrical & Electronic

Exploring the effect of Ga3+ doping on structural, electronic and optical properties of CH3NH3PbCl3 perovskites: an experimental study

P. Sarkar, A. Srivastava, S. K. Tripathy, K. L. Baishnab, T. R. Lenka, P. S. Menon, F. Lin, A. G. Aberle

Summary: Pure and gallium (Ga)-doped CH3NH3PbCl3 perovskites were prepared using a simple solution-processed technique, and analyzed for their structural, optical, morphological, elemental, and electronic properties. The results showed that Ga doping can lead to bandgap narrowing and widening behavior, with optimum Ga doping improving the characteristics of the perovskites, while excessive doping deteriorating the surface morphology. The study suggests a new insight into the fabrication of lead-free perovskite materials with advanced optoelectronic properties using post-transition metals.

JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS (2021)

Article Engineering, Electrical & Electronic

2DEG characteristics of InAlAs/InP based HEMTs by solving Schrodinger and Poisson equations followed by device characteristics

Trupti Ranjan Lenka, Rajan Singh, Susanta Kumar Tripathy, Vishal Goyal, Truong Khang Nguyen, Hieu Pham Trung Nguyen

Summary: This paper presents a study on the 2DEG characteristics of InAlAs/InP-based HEMT structures with two different channel materials (InAlAs and InGaAs) through self-consistent solutions of Schrodinger and Poisson equations. It is found that InAlAs and InGaAs with x = 0.75 composition can be best utilized as channel materials for improved 2DEG density and CV characteristics. DC characteristics extracted through TCAD simulations suggest that InGaAs/InP-based HEMT structures have potential for high-speed microwave and millimeter-wave applications.

INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS (2022)

Article Multidisciplinary Sciences

Device Simulation of Ag2SrSnS4 and Ag2SrSnSe4 Based Thin-Film Solar Cells from Scratch

Ashutosh Srivastava, Susanta Kumar Tripathy, Trupti Ranjan Lenka, Pavol Hvizdos, P. Susthitha Menon, Fen Lin, Armin Gerhard Aberle

Summary: The study investigated the structural, optoelectronic, and elastic properties of quaternary chalcogenide materials Ag2SrSn(S/Se)(4) in kesterite and stannite phases, with a focus on their potential as efficient absorber layer materials in thin-film solar cells. The results show promising absorber efficiency and predicted efficiency for Ag2SrSnSe4 in both kesterite and stannite phases.

ADVANCED THEORY AND SIMULATIONS (2022)

Article Engineering, Multidisciplinary

Structure, stability, and electronic properties of thin TiO2 nanowires of different novel shapes: An abs-initio study

D. Dash, C. K. Pandey, S. Chaudhury, S. K. Tripathy

SCIENTIA IRANICA (2019)

Article Materials Science, Multidisciplinary

Structural, electronic, and mechanical properties of anatase titanium dioxide An ab-initio approach

Debashish Dash, Chandan Kumar Pandey, Saurabh Chaudhary, Susanta Kumar Tripathy

MULTIDISCIPLINE MODELING IN MATERIALS AND STRUCTURES (2019)

Article Materials Science, Multidisciplinary

CO2 adsorption properties of Ni-BDC MOF and its 1-8 wt% g-C3N4/ Ni-BDC MOF

Muhammad Haris Azhar, Tayyaba Noor, Naseem Iqbal, Neelam Zaman, Sarah Farrukh

Summary: This study uses a novel adsorbent Metal Organic Framework (MOF) and its composites to adsorb CO2. Experiment results show that 5 wt% g-C3N4/Ni-BDC MOF exhibits the highest adsorption capacity.

MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS (2024)

Article Materials Science, Multidisciplinary

In2O3-based thin-film transistors with a (400) polar surface for CO2 gas detection at 150 °C

Ayumu Nodera, Shinya Aikawa

Summary: In this study, a CO2 sensor capable of low-temperature operation was fabricated using an open-channel-type thin-film transistor structure with a polar surface of an oxide semiconductor. The sensor showed a sensitivity 2.9 times greater than that under an inert N2 atmosphere at an operating temperature of only 150 degrees C. The results suggest that TFTs fabricated with polar surfaces of oxide semiconductors are useful for gas-sensing applications.

MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS (2024)

Article Materials Science, Multidisciplinary

Effect of La3+ doping on structural, magnetic and LPG gas-sensing properties of Mg-Zn nano-ferrites

Bindhyabasinee Mishra, Jyotirmayee Nanda, Subhra S. Brahma, K. J. Sankaran, R. Sakthivel, S. Ghadei, S. Suman

Summary: In this study, a series of polycrystalline mixed spinel ferrites were synthesized and characterized. The Mg0.5Zn0.5La0.05Fe1.95O4 ferrite showed the best response and recovery time, indicating its potential as a material for LPG sensing.

MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS (2024)

Review Materials Science, Multidisciplinary

Review on efficient calcium aluminate-based phosphors prepared by combustion synthesis technique

Rajashree Panda, Mitrabhanu Behera, A. Arun Kumar, Dhananjay Joshi

Summary: Rare earth doped aluminate-based phosphors are preferred over sulfide-based phosphors. The unique luminescence features of lanthanide-based materials are being utilized for multidisciplinary research and inventive applications. The past years have seen an increase in research interest in aluminate-based phosphors, leading to improvements in their long-lasting phosphorescence and phosphorescence efficiencies. Combustion synthesis route is an efficient technique for preparing nano-phosphor due to its simplicity and cost-effectiveness.

MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS (2024)

Review Materials Science, Multidisciplinary

Synthesis and application of magnetic ferrites (MFe2O4) in the removal of heavy metals from aqueous solutions: An updated review

Younes Zohrabi

Summary: Water is essential for the survival of living organisms, but industrialization has led to contamination of water sources with heavy metals and harmful pollutants. Magnetic nano ferrites have shown potential in effectively removing heavy metals from water due to their magnetic characteristics, high surface area, surface active sites, chemical stability, and ease of modification. This review explores recent literature on the synthesis and application of magnetic ferrites for removing heavy metals from water, aiming to provide a comprehensive understanding for future research.

MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS (2024)

Article Materials Science, Multidisciplinary

Preparation of CuO-PdO-Pd/Ti electrocatalytic membrane and its performance in treating oily wastewater

Baolin Liu, Chenxin Xie, Guanglei Qian, Lishan Zhou, Chenglei Zhang, Lingzhi Zhu

Summary: In this study, a self-cleaning CuO-PdO-Pd/Ti membrane has been developed for the removal of small-sized pollutants. The membrane exhibited superior removal ability and permeability compared to conventional membranes, and maintained high efficiency even after repeated tests. The CuO-PdO-Pd/Ti membrane also showed excellent removal efficiency when treating real wastewater, indicating its high potential for practical applications.

MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS (2024)

Article Materials Science, Multidisciplinary

Effect of molar concentration and drying methodologies on monodispersed silica sol for synthesis of silica aerogels with temperature-resistant characteristics

Debabrata Panda, Akhilesh Kumar Sahu, Krunal M. Gangawane

Summary: A variety of hierarchical nanoporous silica aerogels were synthesized from well-dispersed silica sols, exhibiting diversified particle distributions and excellent thermal properties. The silica aerogels showed low thermal conductivity and high-temperature resilience. Surface modification and dilution of silica sols further improved the thermal resistance of the aerogels. The resilient skeleton structure developed from tiny particles effectively restricted heat dissipation and maintained the porous network at high temperatures.

MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS (2024)

Article Materials Science, Multidisciplinary

Pt Co-catalyst nanolayer on nanostructured V-doped Fe2O3 for boosting photoelectrochemical water oxidation

Hardy Shuwanto, Hairus Abdullah, Young Ku, Jenni Lie

Summary: In this study, a defective system of V-doped Fe2O3 with Pt as a cocatalyst was used for photoelectrochemical water oxidation. The defects in the VFPt-2.5 photoanode were characterized by XPS and EPR analyses. The SEM and TEM analyses revealed that the electrodeposited V-doped alpha-Fe2O3 had a nanosized morphology with an average diameter of 12 nm and a thickness of 300 nm. Under light irradiation, the VFPt-2.5 photoanode achieved a remarkable onset potential and photocurrent density. The stability test showed that Pt helped overcome the charge recombination caused by surface states.

MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS (2024)

Article Materials Science, Multidisciplinary

Effect of atomic substitution on the LiMn2O4 cathode, as well as the suggestion to improve cycling stability and high capacity retention by creating a new route using MWCNTs

Reza Gholipur, Hemin Mohammed Ali Khalifa, Khatereh Afrouzeh

Summary: Developing doped cathode materials is crucial for achieving low cost and high-performance energy storage. LiMn1.977(Ce, Cu, Ti, CeCuTi)0.023O4 nanoparticles show unmatched high structural stability, capacity, and safety during charge/discharge cycles. Ti-doped LiMn2O4 cathode calcined at 700 degrees C demonstrates the highest capacity and retention when multi-walled carbon nanotubes are added. The presence of titanium increases the porosity for reversible lithium storage and the dielectric constant.

MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS (2024)

Article Materials Science, Multidisciplinary

Synthesis and characterization of transition metals (Mn, Fe, Co, Ni) doped tin oxide for magnetic and antimicrobial studies

T. Amutha, M. Rameshbabu, S. Sasi Florence, G. Ramalingam, S. Muthupandi, K. Prabha

Summary: This research provides an overview of the structural analysis and magnetic characteristics of dilute magnetic semiconductor oxides (DMSOs) based on binary metal oxide nanomaterials with different ferromagnetic or paramagnetic dopants. The coprecipitation method was used to create nanoparticle samples, and the results showed certain ferromagnetic behavior and increased magnetic properties.

MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS (2024)

Article Materials Science, Multidisciplinary

Exploration of optoelectronic, thermodynamic, and thermoelectric properties of RFeO3 (R = Pr, Nd) perovskites

Preeti Kumari, Vipul Srivastava, Ramesh Sharma, Hamid Ullah

Summary: In this study, the rare-earth ferrites perovskite RFeO3 (R = Pr, Nd) were investigated for their various properties including structural, electronic, magnetic, optical, thermodynamic, and thermoelectric behavior. The study found that these materials exhibit half-metallic behavior under certain conditions, and their optical and thermoelectric properties were evaluated, making them potential candidates for spintronic devices and UV absorbers.

MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS (2024)

Article Materials Science, Multidisciplinary

Electromagnetic wave absorption of fabricated Fe/Fe3O4/C hollow fibers derived from ceiba fiber templates

Shuting Yuan, Tianchi Wang, Tian Feng, Jian Kong

Summary: In this study, Fe/Fe3O4/C hollow electromagnetic wave absorbers were prepared using hollow ceiba fibers as templates. The proposed hollow structure could reflect and scatter electromagnetic waves multiple times, leading to significant energy consumption. The impedance matching of magnetic materials and biochar enabled the joint absorption of magnetic and dielectric losses to absorb electromagnetic waves.

MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS (2024)

Article Materials Science, Multidisciplinary

Investigating the influence of mono-, di-, and trivalent co-dopants (Li plus , Na+, K+, Ca2+, Bi3+) on the photoluminescent properties and their prospective role in data security applications for SrAl2O4:Tb3+nanophosphors synthesized via an eco-friendly combustion method

G. R. Mamatha, B. R. Radha Krushna, J. Malleshappa, S. C. Sharma, Satish Kumar, C. Krithika, Nandini Robin Nadar, Dileep Francis, K. Manjunatha, Sheng Yun Wu, H. Nagabhushana

Summary: Nanostructured SrAl2O4:Tb3+/M (M = Li+, Na+, K+, Ca2+, Bi3+) green nanophosphors were synthesized using an environmentally friendly combustion process and Areca nut as a sustainable fuel source. The introduction of alkali metal co-dopants optimized the luminescent intensity and showed potential for data security applications.

MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS (2024)

Article Materials Science, Multidisciplinary

Synthesis of copper sulfide (CuxS) films by one-step thermal reduction of copper formate-amine-sulfur complex pastes with low sulfur ratios

Tomoyuki Tachibana, Akihiro Yabuki

Summary: A one-step thermal-reduction method was used to synthesize copper sulfide films with different compositions and pillar-like structures, through adjusting the sulfur ratio and incorporating excess sulfur during the synthesis process.

MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS (2024)

Article Materials Science, Multidisciplinary

Structure, optical and magnetic properties of PVA/CuO/CoFe2O4 nanocomposite films for flexible magneto-electronic applications

Manal A. Mahdy, I. K. El Zawawi, Manal Mounir Ahmad

Summary: Pure PVA and its nanocomposites with CuO and/or CoFe2O4 films were prepared and characterized. The optical properties of the films can be modulated by controlling the percentage of CuO and/or CoFe2O4. The nanocomposites exhibit good ferromagnetic behavior, making the prepared films potentially useful in antenna system miniaturization and flexible magneto-electronic applications.

MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS (2024)