4.5 Article

Influence of annealing temperature on surface morphology and magnetic properties of Ni0.7Zn0.3Fe2O4 ferrite thin films

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.mseb.2010.01.033

关键词

Ni0.7Zn0.3Fe2O4 ferrite films; Chemical solution deposition; Coercivity

资金

  1. National Key Basic Research Program of China [2007CB925002]
  2. National Nature Science Foundation of China [10774146, 10774147, 50672099, 50701042]
  3. Hefei Institutes of Physical Science, Chinese Academy of Sciences

向作者/读者索取更多资源

Nickel-zinc (Ni-Zn) ferrite Ni0.7Zn0.3Fe2O4 thin films were fabricated on Si(0 0 1) substrate by a simple chemical method. The microstructure and magnetic properties were systematically investigated. X-ray diffraction results show that all samples have a single-phase spinel structure with the space group of Fd (3) over barm. The results of field-emission scanning electronic microscopy show that the mean grain size increases from 10 to 32 nm with increasing the annealing temperature from 500 to 900 degrees C. The magnetic properties of Ni0.7Zn0.3Fe2O4 ferrite thin films exhibit a strong dependence on the annealing temperature. The coercivity increases from 25 to 80 Oe and the saturation magnetization increases from 146 to 283 emu/cm(3) with increasing the annealing temperature, which is in favor of modern electronic device miniaturization. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Physics, Condensed Matter

Type-I superconductivity in KBi2 single crystals

Shanshan Sun, Kai Liu, Hechang Lei

JOURNAL OF PHYSICS-CONDENSED MATTER (2016)

Article Physics, Multidisciplinary

Large magnetoresistance in LaBi: origin of field-induced resistivity upturn and plateau in compensated semimetals

Shanshan Sun, Qi Wang, Peng-Jie Guo, Kai Liu, Hechang Lei

NEW JOURNAL OF PHYSICS (2016)

Article Physics, Multidisciplinary

Pressure Induced Stripe-Order Antiferromagnetism and First-Order Phase Transition in FeSe

P. S. Wang, S. S. Sun, Y. Cui, W. H. Song, T. R. Li, Rong Yu, Hechang Lei, Weiqiang Yu

PHYSICAL REVIEW LETTERS (2016)

Article Physics, Multidisciplinary

Compensated Semimetal LaSb with Unsaturated Magnetoresistance

L. -K. Zeng, R. Lou, D. -S. Wu, Q. N. Xu, P. -J. Guo, L. -Y. Kong, Y. -G. Zhong, J. -Z. Ma, B. -B. Fu, P. Richard, P. Wang, G. T. Liu, L. Lu, Y. -B. Huang, C. Fang, S. -S. Sun, Q. Wang, L. Wang, Y. -G. Shi, H. M. Weng, H. -C. Lei, K. Liu, S. -C. Wang, T. Qian, J. -L. Luo, H. Ding

PHYSICAL REVIEW LETTERS (2016)

Article Physics, Applied

Critical current density and vortex pinning mechanism of Lix(NH3)yFe2Te1.2Se0.8 single crystals

Shaohua Wang, Shanshan Sun, Hechang Lei

SUPERCONDUCTOR SCIENCE & TECHNOLOGY (2017)

Article Multidisciplinary Sciences

Quasi-two-dimensional superconductivity from dimerization of atomically ordered AuTe2Se4/3 cubes

J. G. Guo, X. Chen, X. Y. Jia, Q. H. Zhang, N. Liu, H. C. Lei, S. Y. Li, L. Gu, S. F. Jin, X. L. Chen

NATURE COMMUNICATIONS (2017)

Article Materials Science, Multidisciplinary

Enhanced superconductivity and anisotropy of FeTe0.6Se0.4 single crystals with Li-NH3 intercalation

Chenghe Li, Shanshan Sun, Shaohua Wang, Hechang Lei

PHYSICAL REVIEW B (2017)

Article Materials Science, Multidisciplinary

Robust short-range-ordered nematicity in FeSe evidenced by high-pressure NMR

P. S. Wang, P. Zhou, S. S. Sun, Y. Cui, T. R. Li, Hechang Lei, Ziqiang Wang, Weiqiang Yu

PHYSICAL REVIEW B (2017)

Article Materials Science, Multidisciplinary

Large magnetoresistance in the type-II Weyl semimetal WP2

Aifeng Wang, D. Graf, Yu Liu, Qianheng Du, Jiabao Zheng, Hechang Lei, C. Petrovic

PHYSICAL REVIEW B (2017)

Article Materials Science, Multidisciplinary

Extreme anisotropy and anomalous transport properties of heavily electron doped Lix(NH3)yFe2Se2 single crystals

Shanshan Sun, Shaohua Wang, Rong Yu, Hechang Lei

PHYSICAL REVIEW B (2017)

Article Materials Science, Multidisciplinary

Interplay of magnetism and superconductivity in the compressed Fe-ladder compound BaFe2Se3

Jianjun Ying, Hechang Lei, Cedomir Petrovic, Yuming Xiao, Viktor V. Struzhkin

PHYSICAL REVIEW B (2017)

Article Materials Science, Multidisciplinary

Evidence of topological insulator state in the semimetal LaBi

R. Lou, B. -B. Fu, Q. N. Xu, P. -J. Guo, L. -Y. Kong, L. -K. Zeng, J. -Z. Ma, P. Richard, C. Fang, Y. -B. Huang, S. -S. Sun, Q. Wang, L. Wang, Y. -G. Shi, H. C. Lei, K. Liu, H. M. Weng, T. Qian, H. Ding, S. -C. Wang

PHYSICAL REVIEW B (2017)

Article Materials Science, Multidisciplinary

Narrow-gap semiconducting properties of KMgBi with multiband feature

Xiao Zhang, Shanshan Sun, Hechang Lei

PHYSICAL REVIEW B (2017)

Article Materials Science, Multidisciplinary

Anomalous Hall effect in a ferromagnetic Fe3Sn2 single crystal with a geometrically frustrated Fe bilayer kagome lattice

Qi Wang, Shanshan Sun, Xiao Zhang, Fei Pang, Hechang Lei

PHYSICAL REVIEW B (2016)

Article Materials Science, Multidisciplinary

Strong charge density wave fluctuation and sliding state in PdTeI with quasi-one-dimensional PdTe chains

Hechang Lei, Kai Liu, Jun-ichi Yamaura, Sachiko Maki, Youichi Murakami, Zhong-Yi Lu, Hideo Hosono

PHYSICAL REVIEW B (2016)

Article Materials Science, Multidisciplinary

CO2 adsorption properties of Ni-BDC MOF and its 1-8 wt% g-C3N4/ Ni-BDC MOF

Muhammad Haris Azhar, Tayyaba Noor, Naseem Iqbal, Neelam Zaman, Sarah Farrukh

Summary: This study uses a novel adsorbent Metal Organic Framework (MOF) and its composites to adsorb CO2. Experiment results show that 5 wt% g-C3N4/Ni-BDC MOF exhibits the highest adsorption capacity.

MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS (2024)

Article Materials Science, Multidisciplinary

In2O3-based thin-film transistors with a (400) polar surface for CO2 gas detection at 150 °C

Ayumu Nodera, Shinya Aikawa

Summary: In this study, a CO2 sensor capable of low-temperature operation was fabricated using an open-channel-type thin-film transistor structure with a polar surface of an oxide semiconductor. The sensor showed a sensitivity 2.9 times greater than that under an inert N2 atmosphere at an operating temperature of only 150 degrees C. The results suggest that TFTs fabricated with polar surfaces of oxide semiconductors are useful for gas-sensing applications.

MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS (2024)

Article Materials Science, Multidisciplinary

Effect of La3+ doping on structural, magnetic and LPG gas-sensing properties of Mg-Zn nano-ferrites

Bindhyabasinee Mishra, Jyotirmayee Nanda, Subhra S. Brahma, K. J. Sankaran, R. Sakthivel, S. Ghadei, S. Suman

Summary: In this study, a series of polycrystalline mixed spinel ferrites were synthesized and characterized. The Mg0.5Zn0.5La0.05Fe1.95O4 ferrite showed the best response and recovery time, indicating its potential as a material for LPG sensing.

MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS (2024)

Review Materials Science, Multidisciplinary

Review on efficient calcium aluminate-based phosphors prepared by combustion synthesis technique

Rajashree Panda, Mitrabhanu Behera, A. Arun Kumar, Dhananjay Joshi

Summary: Rare earth doped aluminate-based phosphors are preferred over sulfide-based phosphors. The unique luminescence features of lanthanide-based materials are being utilized for multidisciplinary research and inventive applications. The past years have seen an increase in research interest in aluminate-based phosphors, leading to improvements in their long-lasting phosphorescence and phosphorescence efficiencies. Combustion synthesis route is an efficient technique for preparing nano-phosphor due to its simplicity and cost-effectiveness.

MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS (2024)

Review Materials Science, Multidisciplinary

Synthesis and application of magnetic ferrites (MFe2O4) in the removal of heavy metals from aqueous solutions: An updated review

Younes Zohrabi

Summary: Water is essential for the survival of living organisms, but industrialization has led to contamination of water sources with heavy metals and harmful pollutants. Magnetic nano ferrites have shown potential in effectively removing heavy metals from water due to their magnetic characteristics, high surface area, surface active sites, chemical stability, and ease of modification. This review explores recent literature on the synthesis and application of magnetic ferrites for removing heavy metals from water, aiming to provide a comprehensive understanding for future research.

MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS (2024)

Article Materials Science, Multidisciplinary

Preparation of CuO-PdO-Pd/Ti electrocatalytic membrane and its performance in treating oily wastewater

Baolin Liu, Chenxin Xie, Guanglei Qian, Lishan Zhou, Chenglei Zhang, Lingzhi Zhu

Summary: In this study, a self-cleaning CuO-PdO-Pd/Ti membrane has been developed for the removal of small-sized pollutants. The membrane exhibited superior removal ability and permeability compared to conventional membranes, and maintained high efficiency even after repeated tests. The CuO-PdO-Pd/Ti membrane also showed excellent removal efficiency when treating real wastewater, indicating its high potential for practical applications.

MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS (2024)

Article Materials Science, Multidisciplinary

Effect of molar concentration and drying methodologies on monodispersed silica sol for synthesis of silica aerogels with temperature-resistant characteristics

Debabrata Panda, Akhilesh Kumar Sahu, Krunal M. Gangawane

Summary: A variety of hierarchical nanoporous silica aerogels were synthesized from well-dispersed silica sols, exhibiting diversified particle distributions and excellent thermal properties. The silica aerogels showed low thermal conductivity and high-temperature resilience. Surface modification and dilution of silica sols further improved the thermal resistance of the aerogels. The resilient skeleton structure developed from tiny particles effectively restricted heat dissipation and maintained the porous network at high temperatures.

MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS (2024)

Article Materials Science, Multidisciplinary

Pt Co-catalyst nanolayer on nanostructured V-doped Fe2O3 for boosting photoelectrochemical water oxidation

Hardy Shuwanto, Hairus Abdullah, Young Ku, Jenni Lie

Summary: In this study, a defective system of V-doped Fe2O3 with Pt as a cocatalyst was used for photoelectrochemical water oxidation. The defects in the VFPt-2.5 photoanode were characterized by XPS and EPR analyses. The SEM and TEM analyses revealed that the electrodeposited V-doped alpha-Fe2O3 had a nanosized morphology with an average diameter of 12 nm and a thickness of 300 nm. Under light irradiation, the VFPt-2.5 photoanode achieved a remarkable onset potential and photocurrent density. The stability test showed that Pt helped overcome the charge recombination caused by surface states.

MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS (2024)

Article Materials Science, Multidisciplinary

Effect of atomic substitution on the LiMn2O4 cathode, as well as the suggestion to improve cycling stability and high capacity retention by creating a new route using MWCNTs

Reza Gholipur, Hemin Mohammed Ali Khalifa, Khatereh Afrouzeh

Summary: Developing doped cathode materials is crucial for achieving low cost and high-performance energy storage. LiMn1.977(Ce, Cu, Ti, CeCuTi)0.023O4 nanoparticles show unmatched high structural stability, capacity, and safety during charge/discharge cycles. Ti-doped LiMn2O4 cathode calcined at 700 degrees C demonstrates the highest capacity and retention when multi-walled carbon nanotubes are added. The presence of titanium increases the porosity for reversible lithium storage and the dielectric constant.

MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS (2024)

Article Materials Science, Multidisciplinary

Synthesis and characterization of transition metals (Mn, Fe, Co, Ni) doped tin oxide for magnetic and antimicrobial studies

T. Amutha, M. Rameshbabu, S. Sasi Florence, G. Ramalingam, S. Muthupandi, K. Prabha

Summary: This research provides an overview of the structural analysis and magnetic characteristics of dilute magnetic semiconductor oxides (DMSOs) based on binary metal oxide nanomaterials with different ferromagnetic or paramagnetic dopants. The coprecipitation method was used to create nanoparticle samples, and the results showed certain ferromagnetic behavior and increased magnetic properties.

MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS (2024)

Article Materials Science, Multidisciplinary

Exploration of optoelectronic, thermodynamic, and thermoelectric properties of RFeO3 (R = Pr, Nd) perovskites

Preeti Kumari, Vipul Srivastava, Ramesh Sharma, Hamid Ullah

Summary: In this study, the rare-earth ferrites perovskite RFeO3 (R = Pr, Nd) were investigated for their various properties including structural, electronic, magnetic, optical, thermodynamic, and thermoelectric behavior. The study found that these materials exhibit half-metallic behavior under certain conditions, and their optical and thermoelectric properties were evaluated, making them potential candidates for spintronic devices and UV absorbers.

MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS (2024)

Article Materials Science, Multidisciplinary

Electromagnetic wave absorption of fabricated Fe/Fe3O4/C hollow fibers derived from ceiba fiber templates

Shuting Yuan, Tianchi Wang, Tian Feng, Jian Kong

Summary: In this study, Fe/Fe3O4/C hollow electromagnetic wave absorbers were prepared using hollow ceiba fibers as templates. The proposed hollow structure could reflect and scatter electromagnetic waves multiple times, leading to significant energy consumption. The impedance matching of magnetic materials and biochar enabled the joint absorption of magnetic and dielectric losses to absorb electromagnetic waves.

MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS (2024)

Article Materials Science, Multidisciplinary

Investigating the influence of mono-, di-, and trivalent co-dopants (Li plus , Na+, K+, Ca2+, Bi3+) on the photoluminescent properties and their prospective role in data security applications for SrAl2O4:Tb3+nanophosphors synthesized via an eco-friendly combustion method

G. R. Mamatha, B. R. Radha Krushna, J. Malleshappa, S. C. Sharma, Satish Kumar, C. Krithika, Nandini Robin Nadar, Dileep Francis, K. Manjunatha, Sheng Yun Wu, H. Nagabhushana

Summary: Nanostructured SrAl2O4:Tb3+/M (M = Li+, Na+, K+, Ca2+, Bi3+) green nanophosphors were synthesized using an environmentally friendly combustion process and Areca nut as a sustainable fuel source. The introduction of alkali metal co-dopants optimized the luminescent intensity and showed potential for data security applications.

MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS (2024)

Article Materials Science, Multidisciplinary

Synthesis of copper sulfide (CuxS) films by one-step thermal reduction of copper formate-amine-sulfur complex pastes with low sulfur ratios

Tomoyuki Tachibana, Akihiro Yabuki

Summary: A one-step thermal-reduction method was used to synthesize copper sulfide films with different compositions and pillar-like structures, through adjusting the sulfur ratio and incorporating excess sulfur during the synthesis process.

MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS (2024)

Article Materials Science, Multidisciplinary

Structure, optical and magnetic properties of PVA/CuO/CoFe2O4 nanocomposite films for flexible magneto-electronic applications

Manal A. Mahdy, I. K. El Zawawi, Manal Mounir Ahmad

Summary: Pure PVA and its nanocomposites with CuO and/or CoFe2O4 films were prepared and characterized. The optical properties of the films can be modulated by controlling the percentage of CuO and/or CoFe2O4. The nanocomposites exhibit good ferromagnetic behavior, making the prepared films potentially useful in antenna system miniaturization and flexible magneto-electronic applications.

MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS (2024)