4.7 Article

Effects of aluminum content and strain rate on strain hardening behavior of cast magnesium alloys during compression

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2013.11.078

关键词

Magnesium alloy; Strain hardening; Aluminum effect; Strain rate sensitivity

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. AUTO21 Network of Centers of Excellence
  3. Premier's Research Excellence Award (PREA)
  4. NSERC-Discovery Accelerator Supplement (DAS) Award
  5. Canada Foundation for Innovation (CFI)
  6. Ryerson Research Chair (RRC) program

向作者/读者索取更多资源

The aim of this study was to identify the effects of aluminum content and strain rate on the compressive strain hardening behavior of AZ31, AZ61 and AZ91D cast magnesium alloys. The yield strength (YS) and ultimate compressive strength (UCS) of the alloys increased but the strain to failure decreased with increasing aluminum content, due to the presence of an increasing number of beta-Mg17Al12 particles. The YS increased slightly with increasing strain rate, while the strain-rate dependence of the UCS and the strain to failure was basically absent, leading to a decreasing hardening capacity. The strain hardening exponent and strength coefficient evaluated via four equations of Ludwik, Hollomon, Swift, and Afrin et al. showed a similar increase with increasing strain rate in the AZ31 alloy, but were nearly independent of strain rate in the AZ61 and AZ91D alloys. The strength coefficient increased with increasing aluminum content based on all the four equations. The three alloys exhibited stage III hardening followed by stage IV hardening. AZ31 alloy had the longest stage IV hardening and the highest strain to failure, followed by AZ61 and AZ91D alloys. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Nanoscience & Nanotechnology

Achieving high damping capacity and strength simultaneously in a high-zinc aluminum alloy via melt spinning and hot extrusion

Xianna Meng, Datong Zhang, Weiwen Zhang, Cheng Qiu, Daolun Chen

Summary: This study improved the strength and damping capacity of high-Zn AlZn alloys through grain refinement and alloying, and achieved the preparation of fine-grained high-Zn AlZnMgCuZr alloys. The microstructure of the alloys included numerous second-phase particles, high-density nano-sized precipitates, high solute solubility, and many interfaces. These special structural features provided the alloys with excellent strength and damping capacity.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2022)

Article Nanoscience & Nanotechnology

On the origin of deformation mechanisms in a heterostructured aluminum alloy via slip trace and lattice rotation analyses

S. S. Dash, D. J. Li, X. Q. Zeng, D. Y. Li, D. L. Chen

Summary: In this study, the micro-deformation mechanisms in an Al-Si cast alloy under stepwise compressive loading were investigated using EBSD and slip trace analyses. The presence of heterogeneous microstructural features significantly influenced the slip trace characteristics. Four types of slip traces in primary α-Al grains were identified, revealing the nature of dislocation motion and the extent of deformation difficulty associated with grain orientations and eutectic Si particles. Crystallographic factors were analyzed to understand the deformation behavior of the alloy.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2023)

Article Nanoscience & Nanotechnology

Deformation behavior of a newly-developed T4-treated Al-Si die cast alloy

S. S. Dash, D. J. Li, X. Q. Zeng, D. Y. Li, D. L. Chen

Summary: The aim of this study is to investigate the monotonic and cyclic deformation behavior of a high-pressure die cast Silafont (R)-36 alloy in a naturally-aged T4 state. The T4 heat treatment led to significant microstructural changes, resulting in the transformation of coralloid-like eutectic Si particles to spheroidal Si particles embedded in the Al matrix. The T4 alloy exhibited strong cyclic hardening and a longer low cycle fatigue life compared to its as-cast state at lower strain amplitudes, attributed to particle-dislocation interactions during deformation. A strain energy density-based model incorporating microstructural aspects can be used to predict the fatigue life of the T4 alloy.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2023)

Article Materials Science, Ceramics

Fatigue behavior of silicon nitride ceramics

C. C. Ye, H. Q. Ru, D. L. Chen

Summary: This study aimed to investigate the effects of sintering additives on the fatigue life of silicon nitride (Si3N4) ceramics sintered via hot pressing, focusing on the prominent toughening mechanisms. The fatigue life and probability of survival of YMH samples using MgO and Y2O3 as sintering additives were found to be higher than those of YAH samples using Al2O3 and Y2O3 as sintering additives. This was attributed to the higher aspect ratio of the elongated β-Si3N4 grains, larger compressive residual stresses, and the presence of only amorphous (or glassy) phase at β-Si3N4 grain boundaries in the YMH sample.

CERAMICS INTERNATIONAL (2023)

Article Engineering, Mechanical

Influence of solution-hardening on the mechanical properties and wear resistance of copper alloys

Aakash Kumar, Yunqing Tang, D. Y. Li, D. L. Chen, Wei Li, Q. Y. Li

Summary: Solid-solution hardening can improve the wear resistance of metals by pinning dislocations and affecting the atomic bond strength and Young's modulus. Cu was hardened by Ni and Mn, resulting in increased hardness and Young's modulus with Ni addition, and decreased Young's modulus but increased hardness with Mn addition. However, the effect of Ni and Mn on wear resistance is underestimated or overestimated by using the classic Archard equation, which can be corrected by a wearing energy model taking into account the influence of Young's modulus.
Article Engineering, Mechanical

Bauschinger effect on wear of cold-worked Cu and Mg-A study combining molecular dynamics modeling and experimental investigation

Y. Q. Tang, A. Kumar, D. L. Chen, D. Y. Li, Q. Y. Li, W. Li

Summary: The Bauschinger effect, which refers to the decrease in yield strength of a metal after plastic deformation in the opposite direction prior to testing, affects the wear resistance of materials under different conditions. This study investigated the influence of the Bauschinger effect on the wear resistance of strain-hardened Cu (FCC) and Mg (HCP) through experiments and molecular dynamics simulations. It was observed that strain-free Cu exhibited a stronger Bauschinger effect, while the situation was reversed for undeformed and deformed Mg samples. The underlying mechanisms were studied through molecular dynamics simulations, revealing that high-density dislocations weaken the Bauschinger effect in cold-worked Cu, while cold-worked Mg with fewer defects has more space for defect generation and cancellation, resulting in a stronger Bauschinger effect. Additionally, the Bauschinger effect was found at the oxide/metal interface, making the oxide scale on worn surfaces less prone to being scratched off during bi-directional sliding, thus enhancing the wear resistance of the metal.
Article Materials Science, Multidisciplinary

Investigation of Mechanical Properties and Wear Resistance of A2/B2 Type Medium-Entropy Alloy Matrix Reinforced with Tungsten Particles by In-Situ Reaction

Mingyu Wu, Guijiang Diao, Zhen Xu, Ruiken Sim, Wengang Chen, Daolun Chen, Dongyang Li

Summary: Microstructure, mechanical properties, wear resistance, corrosion and corrosive wear resistance of AlCrFeNiWx (x = 0, 0.1, 0.2, 0.3 and 0.4) medium-entropy alloys (MEAs) prepared by vacuum arc melting process were investigated. Tungsten addition in AlCrFeNi alloy significantly improves its hardness, strength, pitting resistance and passivation property, while excessive W addition reduces ductility. AlCrFeNiW0.3 shows the highest corrosion resistance and W enhances the wear and corrosive wear resistance in AlCrFeNiW0.4.

METALS (2023)

Review Materials Science, Multidisciplinary

A Review on Processing-Microstructure-Property Relationships of Al-Si Alloys: Recent Advances in Deformation Behavior

Soumya Sobhan Dash, Daolun Chen

Summary: This review focuses on recent developments in the processing, structure, and mechanical properties of structural Al-Si alloys, aiming to address pressing environmental issues and achieve lightweighting strategies. It summarizes advancements in casting methods and additive manufacturing processes, analyzes improvements in thermal stability, electrical conductivity, and mechanical strength, and discusses fatigue failure mechanisms and surface topography.

METALS (2023)

Review Materials Science, Multidisciplinary

Deformation Behavior of 3D-Printed High-Entropy Alloys: A Critical Review

Dhruv Bajaj, Aihan Feng, Shoujiang Qu, Zhuo Chen, Dongyang Li, Daolun L. Chen

Summary: The 3D printing of high-entropy alloys (HEAs) offers greater flexibility in designing and manufacturing novel materials. These 3D-printed HEAs exhibit unique microstructures and mechanical properties, breaking the limitations of conventionally-manufactured materials. This review provides insight into the deformation behavior of 3D-printed HEAs, with emphasis on fatigue characteristics and the effects of postfabrication thermomechanical processing.

ADVANCED ENGINEERING MATERIALS (2023)

Article Automation & Control Systems

Dissimilar ultrasonic spot welding of ZEK100 magnesium alloy to a clad AA7075 aluminum alloy: Tensile and fatigue properties

Soumya Sobhan Dash, Mudit Kesharwani, Abdulmohsen Albedah, Xianquan Jiang, Dongyang Li, Daolun Chen

Summary: The study aimed to investigate the feasibility of joining ZEK100-O magnesium alloy to AA7072-clad high-strength AA7075-T6 aluminum alloy using solid-state ultrasonic spot welding (USW). The interfacial microstructures, tensile lap shear strength, and fatigue resistance were evaluated. Mechanical interlocks and a diffusion layer were observed at the weld interface, resulting in enhanced tensile lap shear strength and fatigue life.

INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY (2023)

Article Materials Science, Multidisciplinary

Achieving superior strength-ductility synergy in a heterostructured magnesium alloy via low-temperature extrusion and low-temperature annealing

H. Wang, D. T. Zhang, C. Qiu, W. W. Zhang, D. L. Chen

Summary: A low-alloyed Mg-1.2Zn-0.1Ca alloy was fabricated via low-temperature extrusion and annealing to attain heterostructures with different fine-grained fractions, showing significant effects on the mechanical properties. The alloy exhibited increased fine-grained fraction and fine grain size with annealing, resulting in superior mechanical properties of high yield strength and good ductility. Hetero-deformation induced strengthening plays a key role in achieving the superior mechanical properties.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2023)

Article Materials Science, Multidisciplinary

Adiabatic shear instability in a titanium alloy: Extreme deformation-induced phase transformation, nanotwinning, and grain refinement

X. R. Guan, Q. Chen, S. J. Qu, G. J. Cao, H. Wang, A. H. Feng, D. L. Chen

Summary: Increasingly harsh service conditions require better high strain-rate performance of titanium alloys. Adiabatic shear band (ASB), which is prone to dynamic loading, often leads to catastrophic damage. However, the relationship between internal nanostructures and shear instability remains unclear.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2023)

Article Nanoscience & Nanotechnology

Effects of Al and Ti on microstructure, mechanical properties and wear resistance of TiXCrFe2Ni2 alloys

G. J. Diao, A. Q. He, Y. Q. Tang, M. Y. Wu, D. Zhang, W. G. Chen, D. L. Chen, D. Y. Lia

Summary: The individual effects of Al and Ti on microstructure, mechanical and tribological properties of CrFe2Ni2 alloy were investigated. Al addition changed the alloy phase from FCC to a mixture of FCC, A2 and B2 phases, increasing the mechanical strength while slightly sacrificing ductility. Ti caused the formation of hard phases in the alloy, increasing the wear resistance, but also decreasing the ductility. Detailed characterization is crucial for optimizing tribological applications of relevant HEAs.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2023)

Article Engineering, Mechanical

Influences of alloying elements on microstructure and tribological properties of a medium-weight high-entropy alloy

S. E. Mousavi, A. Q. He, M. Palimi, D. L. Chen, D. Y. Li

Summary: The individual influences of Al, Fe and Ni on the microstructure, wear resistance and mechanical properties of high-entropy alloys (AlxCrFeyNizTi0.2) were studied. It was found that increasing Al content led to the replacement of the FCC phase by disordered and ordered BCC phases, resulting in increased micro-hardness and decreased wear volume loss. Fe increased the fraction of A2 phase but reduced hardness and wear resistance. Ni helped form a FCC phase, which decreased hardness and increased wear volume loss. Among all specimens, AlCrFeNiTi0.2 and Al0.5CrNiTi0.2 showed the highest wear resistance.
Article Materials Science, Multidisciplinary

Small-depth nanoindentation studies of an additively manufactured titanium alloy: Anisotropic nanomechanical properties and correlation with microscopic mechanical behaviour

Zhiying Liu, Lizhong Lang, S. M. A. K. Mohammed, Daolun Chen, Bei He, Yu Zou

Summary: Nanoindentation is widely used for measuring local mechanical properties of heterogeneous materials. In this study, a nanoindentation mapping method with small indentation depths (<200 nm) is used to investigate the nanohardness (H) of the alpha phase in an additively manufactured titanium alloy. The results reveal two groups of H values exhibited by alpha grains with different crystal orientations, in contrast to the wide range of H values measured by conventional large-depth nanoindentation. These two groups of H values are attributed to the contribution of elasticity in the measurement using small-depth nanoindentation. Additionally, the H values are correlated with the microscopic mechanical behavior of alpha grains, showing that hard alpha grains are deformed by shear banding while soft alpha grains are deformed by dislocation slip.

MATERIALIA (2023)

Article Nanoscience & Nanotechnology

The role of parent austenite grain size on the variant selection and intervariant boundary network in a lath martensitic steel

Ahmad Mirzaei, Peter D. Hodgson, Xiang Ma, Vanessa K. Peterson, Ehsan Farabi, Gregory S. Rohrer, Hossein Beladi

Summary: This study investigated the influence of parent austenite grain refinement on the intervariant boundary network in a lath martensitic steel. It found that refining the parent austenite grain led to a decrease in the fraction of certain boundaries in the martensite and an increase in the connectivity of low energy boundaries, ultimately improving the impact toughness.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

The interdependence of the thermal and mechanical cycling behaviour in Ti2448 (Ti-24Nb-4Zr-8Sn, wt%)

N. L. Church, C. E. P. Talbot, L. D. Connor, S. Michalik, N. G. Jones

Summary: Metastable beta Ti alloys based on the Ti-Nb system have attracted attention due to their unique properties. However, the unstable cyclic behavior of these alloys has hindered their widespread industrial use. Recent studies have shown that internal stresses, including those from dislocations, may be responsible for this behavior. This study demonstrates that inter-cycle thermal treatments can mitigate the unstable cyclic behavior, providing a significant breakthrough in our understanding of Ti-Nb superelastic materials.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Ultrasonic-assisted soldering of SiC ceramic and aluminum alloy with a commercial inactive Sn3.0Ag0.5Cu solder

Di Zhao, Chenchen Zhao, Ziyang Xiu, Jiuchun Yan

Summary: This study proposes a novel strategy for achieving the bonding of SiC ceramic and Al alloy using ultrasound. The ultrasound promotes the dissolution of Al into the solder, activating the solder and triggering the interfacial reaction between SiC ceramic and solder. With increasing ultrasonic duration, the bonding between SiC and Al transitions from partial to full metallurgical bonding.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Effect of grain orientation and precipitates on the superelasticity of Fe-Ni-Co-Al polycrystalline alloys

Kang Du, Yang Zhang, Guangda Zhao, Tao Huang, Liyuan Liu, Junpeng Li, Xiyu Wang, Zhongwu Zhang

Summary: This paper systematically investigated the evolution of microstructure in Fe-Ni-Co-Al polycrystalline alloys and its effects on mechanical properties. The results revealed that the migration of grain boundaries in different processes is driven by different factors, which impacts the grain orientation and precipitate formation. In the process of directional recrystallization, grains with specific orientations grow in the grain boundary region and form the dominant orientation, while grains with lower migration rate form the minor orientation. The alloy produced through directional recrystallization exhibited good recoverable strain and superelastic strain, while the alloy produced through solid solution treatment showed no evident superelastic behavior.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Effect of thermomechanical processing on compressive mechanical properties of Ti-15Mo additively manufactured by laser metal deposition

Edohamen Awannegbe, Liang Chen, Yue Zhao, Zhijun Qiu, Huijun Li

Summary: This study employed laser metal deposition to additively manufacture Ti-15Mo wt% alloy, and subsequently subjected it to post-fabrication uniaxial thermomechanical processing. The results showed that different zones in the microstructure remained after processing, and deformation mechanisms mainly involved slip and martensite formation. The compressive mechanical properties were found to be dependent on strain rate, with higher flow stress and compressive strength observed at higher strain rates. Grain structure homogenisation was not achieved, leading to anisotropic tensile properties.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Crystallographic texture and the mechanical properties of API 5L X70 pipeline steel designated for an arctic environment

Reza Khatib Zadeh Davani, Enyinnaya George Ohaeri, Sandeep Yadav, Jerzy A. Szpunar, Jing Su, Michael Gaudet, Muhammad Rashid, Muhammad Arafin

Summary: This research aims to investigate the effect of roughing and finishing reductions on crystallographic texture. The results show significant heterogeneity in the centerline region, with higher intensity of certain textures. Drop Weight Tear Test indicates that steel specimens with lower and medium reductions exhibit superior low-temperature impact toughness compared to steel with higher reductions. The electrochemical hydrogen charging experiments confirm the presence of internal hydrogen cracks only in steel with lower and medium reductions.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Effect of Cr content in temperature-dependent mechanical properties and strain hardening of a twinning-induced plasticity steel

Flavio De Barbieri, Denis Jorge-Badiola, Rodrigo Allende, Karem Tello, Alfredo Artigas, Franco Perazzo, Henry Jami, Juan Perez Ipina

Summary: This study examines the effect of Cr additions on the mechanical behavior of TWIP steel at temperatures ranging from 25°C to 350°C. The results indicate that different temperature-dependent strengthening mechanisms, including mechanical twinning, Dynamic Strain Aging, and slip bands, are at play. The stacking fault energy (SFE) influences the percentage of mechanical twinning, which in turn affects the strain hardening rate.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Electron beam welding of L12-nanoparticle-strengthened strong and ductile medium-entropy alloys for cryogenic applications

Hanlin Peng, Siming Huang, Ling Hu, Bingbing Luo, Liejun Li, Ian Baker

Summary: This study explores the weldability, microstructures, and mechanical properties of two L1(2)-nanoparticle-strengthened medium-entropy alloys after electron beam welding (EBW). The results show that strong yet ductile defect-free joints were produced, with larger grain sizes in the fusion zones compared to the heat-affected zones and base materials. Both EBWed MEAs exhibited high yield strengths, high ultimate tensile strengths, and good fracture strains at 77 K. The V-doping improved the cryogenic mechanical properties of the TMT MEA.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Strain rate-dependent tensile deformation behavior and fracture mechanism of Mn-N bearing lean duplex stainless steel

Yongxin Wang, Lei Chen, Lizi Shao, Shuo Hao, Motomichi Koyama, Xingzhou Cai, Xiaocong Ma, Miao Jin

Summary: This study investigated the tensile deformation behavior of an Mn-N bearing lean duplex stainless steel with metastable austenite. The results showed that the strain rate had significant influence on the work hardening, strain-induced martensitic transformation, and fracture mechanism.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Recovery of sheet formability of cold-rolled pure titanium by cryogenic-deformation treatment

Jong Woo Won, Seulbi Lee, Hye-Jeong Choe, Yong-Taek Hyun, Dong Won Lee, Jeong Hun Lee

Summary: Cold-rolled pure titanium showed improved sheet formability after undergoing cryogenic-deformation treatment. This treatment increased the thinning capability of the titanium and suppressed cracking during sheet forming. The formation of twins during deformation contributed to high thinning capability and increased strength through grain refinement and dislocation accumulation.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Rapidly induced homogenization and microstructure control of Cu-15Ni-8Sn alloy by electropulsing treatment

Handong Li, Lin Su, Lijuan Wang, Yanbin Jiang, Jiahui Long, Gaoyong Lin, Zhu Xiao, Yanlin Jia, Zhou Li

Summary: Homogenization heat treatment is a key procedure in controlling the second phase, enhancing composition uniformity, and workability of as-cast Cu-15Ni-8Sn alloy. This study found that electropulsing treatment (EPT) can significantly reduce treatment temperature and time, improve elongation and overall mechanical properties of the alloy.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Study on the regulation of microstructure and mechanical properties of Cu-15Sn-0.3Ti alloy by a novel mechanical-heat-electricity synergistic method

Yuxuan Wang, Juntao Zou, Lixing Sun, Yunfei Bai, Zhe Zhang, Junsheng Cheng, Lin Shi, Dazhuo Song, Yihui Jiang, Zhiwei Zhang

Summary: A novel mechanical-heat-electricity synergistic method was proposed to enhance the mechanical properties of Cu-15Sn-0.3Ti alloy by forming annealing twins (ATs). The combination method of Rotary swaging (RS) and Electric pulse treatment (EPT) successfully induced recrystallization and refinement of the microstructure, leading to a significant increase in the strength of the alloy within a short time.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Ta-induced strengthening of CoCrNi-AlTi medium-entropy alloys via nanoscale heterogeneous coherent precipitate

Zhiyi Ding, Jiangtao Xie, Tong Wang, Aiying Chen, Bin Gan, Jinchao Song

Summary: This study demonstrated the Ta-induced strengthening of CoCrNi-AlTi MEAs using nanoscale heterogeneous coherent precipitates. The addition of Ta and aging treatments significantly enhanced the mechanical properties of the alloy, including yield strength, ultimate tensile strength, and elongation.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Microstructural evolution and deformation behavior of an interstitial TRIP high-entropy alloy under dynamic loading

Z. Y. You, Z. Y. Tang, B. Wang, H. W. Zhang, P. Li, L. Zhao, F. B. Chu, H. Ding

Summary: The mechanical properties and microstructural evolution of C-doped TRIP-assisted HEA under dynamic loading conditions were systematically investigated in this study. The results showed that dynamic tensile deformation led to an increase in yield strength and a decrease in ultimate tensile strength, with a trend towards increased total elongation. The primary deformation mechanisms shifted from TRIP and TWIP effects to deformation twinning and dislocations. The presence of carbides formed through C-doping hindered dislocation slip and promoted the activation of multiple twinning systems.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Strong resistance to shear instability in multilayered metallic composites by nanoscale amorphous-BCC crystalline interfaces

Feng Qin, Feihu Chen, Junhua Hou, Wenjun Lu, Shaohua Chen, Jianjun Li

Summary: Plastic instability in strong multilayered composites is completely suppressed by architecting nanoscale BCC Nb crystalline-amorphous CuNb interfaces.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)