4.7 Article

The influence of Li on the tensile properties of extruded in situ Al-15%Mg2Si composite

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2011.10.101

关键词

Mechanical characterization; Electron microscopy; Composites; Thermomechanical processing; Fracture

资金

  1. Iran National Science Foundation

向作者/读者索取更多资源

This work was carried out to investigate the effect of different Li concentrations (0.15, 0.3, 0.5 and 0.7) as a modifying agent on the microstructure and tensile properties of an in situ Al-15%Mg2Si composite. Cast, modified and homogenized small ingots were extruded at 480 degrees C at extrusion ratio of 18:1 and ram speed of 1 mm/s. Various techniques including metallography, tensile testing and scanning electron microscopy (SEM) were used to characterize the mechanical behavior, microstructural observations and fracture mechanisms of this composite. The results showed that 0.5%Li addition and homogenizing treatment were highly effective in modifying Mg2Si particles. The results also exhibited that the addition of Li up to 0.5 wt.% increases both ultimate tensile strength (UTS) and tensile elongation values. However, the tensile results slightly decrease with the addition of more Li (>0.5 wt.%). The highest UTS and elongation values were found to be 280 MPa and 16% for homogenized and extruded Al-15%Mg2Si-0.5%Li composite, respectively. Fracture surface examinations revealed a transition from brittle fracture mode in as-cast composite to ductile fracture in homogenized and extruded specimens. This can be attributed to the changes in size and morphology of Mg2Si intermetallic and porosity content. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据