4.7 Article

High temperature processing of Mg-Zn-Y alloys containing quasicrystal phase for high strength

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2011.05.001

关键词

Mechanical characterization; Electron microscopy; Magnesium alloys; Precipitation

向作者/读者索取更多资源

A process to obtain high strength in a Mg-Zn-Y alloy containing quasicrystalline phase is described. The process involves solutionizing at a high temperature, precipitation of the quasicrystal phase during extrusion, followed by ageing. Tensile yield strengths of over 350 MPa are obtained with grain sizes of 14-20 mu m. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Materials Science, Multidisciplinary

Precipitation of stable icosahedral quasicrystal phase in a Mg-Zn-Al alloy

Alok Singh, Takanobu Hiroto, Machiko Ode, Hiroyuki Takakura, Karel Tesar, Hidetoshi Somekawa, Toru Hara

Summary: The precipitation of a stable quasicrystalline i-phase has been observed in a Mg-6Zn-3Al magnesium alloy, which may be the first discovery of a stable i-phase in this alloy. The dissolution of i-phase at grain boundaries leads to precipitation in the Mg-matrix during cooling. Nucleation characteristics, phase transformation, and interface morphology were investigated.

ACTA MATERIALIA (2022)

Article Materials Science, Multidisciplinary

Breakdown Trade-Off Relation of Mechanical Properties via Micro-alloying in Mg-Mn Alloys

Hidetoshi Somekawa, Hitoshi Fukuoka, Alok Singh, Hideki Yamaura

Summary: The impact of micro-alloying on tensile behavior at different strain rates is investigated using five types of extruded Mg-0.3 at. pct Mn-0.1 at. pct X ternary alloys. Microstructural observations reveal that the micro-alloying elements segregate at grain boundaries, affecting the mechanical properties and deformation behavior. Different micro-alloying elements lead to different mechanical properties and deformation mechanisms.

METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE (2022)

Article Chemistry, Physical

Spin Polarization of Mn Could Enhance Grain Boundary Sliding in Mg

Vei Wang, Jun-Ping Du, Hidetoshi Somekawa, Shigenobu Ogata, Wen Tong Geng

Summary: This study examines the segregation of rare earth alloying elements in magnesium and its effect on grain boundary sliding. It is found that the segregation of manganese enhances the grain boundary sliding and promotes the ductility of magnesium.

MATERIALS (2022)

Article Materials Science, Multidisciplinary

Deformation behaviour of novel medium carbon bainitic steels with different retained austenite characteristics designed by the sparse mixed regression model

Elango Chandiran, Rintaro Ueji, Yukiko Ogawa, Kenta Nagata, Hidetoshi Somekawa, Masahiko Demura

Summary: A new concept for the alloy design of advanced structural steels was proposed based on the experimental elaboration of deformation behaviour in two novel medium carbon bainitic steels. The chemical composition and heat treatment conditions were designed using sparse mixed regression modelling. The results showed that both steels exhibited high tensile strength and good elongation. Steel A showed greater post-uniform elongation, while Steel B showed larger uniform elongation.

JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T (2022)

Article Chemistry, Physical

An inverse Hall-Petch relationship during room-temperature compression of commercially pure magnesium

Elango Chandiran, Yukiko Ogawa, Rintaro Ueji, Hidetoshi Somekawa

Summary: The effect of grain size and strain rate on the room-temperature compression of pure magnesium was studied. It was found that the deformation mechanisms and grain-boundary sliding were significantly influenced by grain size and strain rate, and the Hall-Petch relationship broke down under certain conditions. Additionally, the deformation mode had a negligible impact on the dominant deformation mechanisms and the Hall-Petch breakdown.

JOURNAL OF ALLOYS AND COMPOUNDS (2023)

Article Materials Science, Multidisciplinary

Microstructure Evolution and Local Hardness of Mg-Y-Zn Alloys Processed by ECAE

Motohiro Yuasa, Ryoichi Sato, Takao Hoshino, Daisuke Ando, Yoshikazu Todaka, Hiroyuki Miyamoto, Hidetoshi Somekawa

Summary: Mg-9 at%Y-6 at%Zn and Mg-2 at%Y-1 at%Zn alloys were processed by equal-channel-angular extrusion (ECAE) to investigate their microstructure evolution and local hardness. The area fraction of the kink bands in the Mg-9 at%Y-6 at%Zn alloys increased with increasing the number of ECAE passes, resulting in higher hardness. In the Mg-2 at%Y-1 at%Zn alloys, the microstructural evolution of the alpha-Mg matrix phase and long-period stacking ordered (LPSO) phase by 1-pass ECAE and the increase in local hardness were discussed.

MATERIALS TRANSACTIONS (2023)

Article Nanoscience & Nanotechnology

Application of a sparse mixed regression method to design the optimal composition and heat treatment conditions for transformation-induced plasticity steel with high strength and large elongation

Rintaro Ueji, Kenji Nagata, Hidetoshi Somekawa, Masahiko Demura

Summary: This study designed the chemical compositions and heat treatment conditions for low-alloyed TRIP steel using a sparse mixed regression method. Experimental results confirmed that these conditions provided high strength and large elongation. Evaluating the metallurgical parameters highlighted two different design concepts.

SCRIPTA MATERIALIA (2023)

Article Chemistry, Physical

Grain boundary plasticity at intermediate temperatures in fine-grained Mg-Mn ternary alloys

Hidetoshi Somekawa, Kimiyoshi Naito

Summary: The effect of micro-alloying with different elements on grain boundary sliding behavior at intermediate temperatures was examined. The micro-alloying element affects the damping capacity and the tensile response of the alloy. The partial contribution of grain boundary sliding to deformation is the major reason for the deviation of experimental results from calculated values.

JOURNAL OF ALLOYS AND COMPOUNDS (2023)

Article Chemistry, Physical

Spray-Dried MgMn2O4 Spinel Oxide Cathode with Single Mg Ion-Conductive Polymers for Rechargeable Mg Metal Battery

Naomi Nishimura, Kazumasa Masaki, Wei Tan, Reona Iimura, Hiroaki Kobayashi, Kei Nishikawa, Toshihiko Mandai, Hidetoshi Somekawa, Yoichi Tominaga

Summary: To improve the cycle performance of Mg metal batteries, a polymer coating (PSTFSI-Mg) was applied on the surface of spinel-type MgMn2O4 cathode. The polymer coating promoted electron transfer between particles, as confirmed by transmission electron microscopy. Density functional theory calculations revealed that the polymer reduced the energy gap between the valence band maximum of MgMn2O4 and the highest occupied molecular orbital level of the electrolyte, thus suppressing electrolyte degradation.

JOURNAL OF PHYSICAL CHEMISTRY C (2023)

Article Chemistry, Physical

Fabrication of Li anode metal via bulk mechanical property analysis

Hidetoshi Somekawa, Kei Nishikawa, Taku Moronaga, Takahito Ohmura

Summary: Two types of lithium metals with different average grain sizes were successfully produced through extrusion process and rapid molding process. The hardness of the metals was found to be influenced by grain size, decreasing with a finer grained structure, which is contrary to the trend observed in other light-weight pure metals. The fine-grained Li metal exhibited a large strain rate dependence and unusual behavior, attributed to the contribution of grain boundary sliding to deformation. Additionally, the fine-grained Li metal showed better electrochemical characteristics in terms of over-potential and voltage response during charging and discharging operations.

JOURNAL OF POWER SOURCES (2023)

Article Nanoscience & Nanotechnology

Mechanical and functional properties of ultra-thin Mg foils

Hidetoshi Somekawa, Norie Motohashi, Shuji Kuroda, Toshihiko Mandai

Summary: Wide and thin Mg foils with thicknesses between 35 & mu;m and 400 & mu;m without any edge cracks are successfully produced. The initial microstructure in the billet is effective and essential for the processing. The mechanical properties of the foils are influenced by the foil thickness, as shown by hardness and tensile tests.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2023)

Article Nanoscience & Nanotechnology

Enhancement of damping capacity by deformation-induced martensitic transformation in Mg-Sc alloy

Elango Chandiran, Yukiko Ogawa, Rintaro Ueji, Alok Singh, Hidetoshi Somekawa

Summary: The effects of different crystallographic orientations of the grains on damping capacity (tan8) in magnesium alloys were investigated. The results showed that the grain orientation had a significant impact on the damping capacity of pure magnesium and Mg-Sc alloy. The absence of the solute atom Sc resulted in higher damping capacity in pure magnesium compared to the Mg-Sc alloy.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2023)

Article Materials Science, Multidisciplinary

Induced kink boundary in Mg-Y-Zn alloy by tube-shape forming

Hidetoshi Somekawa, Motohiro Yuasa

Summary: The secondary formability and the effect of shape application on induced kink boundaries in Mg-9at.%Y-6at.%Zn alloy were investigated through experimental and numerical studies. A tube-shaped alloy without any cracks was successfully formed with kink boundaries associated with the applied shear strain. Numerical results showed a substantial shear strain at the contact region, but with an opposite shear direction after tube formation, indicating the possibility of de-kinking behavior. Additionally, the formed alloy exhibited higher hardness by 30 Hv compared to the un-processed alloy, and the correlation between kink density and hardness was consistent with literature results on wrought-processed Mg-Y-Zn alloys.

MATERIALS LETTERS (2023)

Article Urology & Nephrology

Bioabsorbable zinc alloys for use in urological surgery

Sano Takanori, Nobuyuki Hinata, Ryoya Kobayashi, Tatsuya Nakatsuji, Yasuyoshi Okamura, Junya Furukawa, Yuzo Nakano, Toshiji Mukai, Masato Fujisawa

Summary: We developed a bioabsorbable metal alloy and found that it has good degradability and no stone adhesion. It was safely used in animal experiments.

WORLD JOURNAL OF UROLOGY (2023)

Article Materials Science, Multidisciplinary

Damping property of phases of Ma-Sc measured by nano-DMA

Yukiko Ogawa, Alok Singh, Hidetoshi Somekawa

Summary: The damping capacities of three different phases (hcp, bcc, and martensite) in a Mg-Sc alloy were investigated. Results showed that the martensite phase exhibited a higher damping capacity compared to hcp and bcc phases. The higher damping capacity of the martensite phase is attributed to the movement of lattice defects, such as twin interfaces.

MRS COMMUNICATIONS (2022)

Article Nanoscience & Nanotechnology

The role of parent austenite grain size on the variant selection and intervariant boundary network in a lath martensitic steel

Ahmad Mirzaei, Peter D. Hodgson, Xiang Ma, Vanessa K. Peterson, Ehsan Farabi, Gregory S. Rohrer, Hossein Beladi

Summary: This study investigated the influence of parent austenite grain refinement on the intervariant boundary network in a lath martensitic steel. It found that refining the parent austenite grain led to a decrease in the fraction of certain boundaries in the martensite and an increase in the connectivity of low energy boundaries, ultimately improving the impact toughness.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

The interdependence of the thermal and mechanical cycling behaviour in Ti2448 (Ti-24Nb-4Zr-8Sn, wt%)

N. L. Church, C. E. P. Talbot, L. D. Connor, S. Michalik, N. G. Jones

Summary: Metastable beta Ti alloys based on the Ti-Nb system have attracted attention due to their unique properties. However, the unstable cyclic behavior of these alloys has hindered their widespread industrial use. Recent studies have shown that internal stresses, including those from dislocations, may be responsible for this behavior. This study demonstrates that inter-cycle thermal treatments can mitigate the unstable cyclic behavior, providing a significant breakthrough in our understanding of Ti-Nb superelastic materials.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Ultrasonic-assisted soldering of SiC ceramic and aluminum alloy with a commercial inactive Sn3.0Ag0.5Cu solder

Di Zhao, Chenchen Zhao, Ziyang Xiu, Jiuchun Yan

Summary: This study proposes a novel strategy for achieving the bonding of SiC ceramic and Al alloy using ultrasound. The ultrasound promotes the dissolution of Al into the solder, activating the solder and triggering the interfacial reaction between SiC ceramic and solder. With increasing ultrasonic duration, the bonding between SiC and Al transitions from partial to full metallurgical bonding.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Effect of grain orientation and precipitates on the superelasticity of Fe-Ni-Co-Al polycrystalline alloys

Kang Du, Yang Zhang, Guangda Zhao, Tao Huang, Liyuan Liu, Junpeng Li, Xiyu Wang, Zhongwu Zhang

Summary: This paper systematically investigated the evolution of microstructure in Fe-Ni-Co-Al polycrystalline alloys and its effects on mechanical properties. The results revealed that the migration of grain boundaries in different processes is driven by different factors, which impacts the grain orientation and precipitate formation. In the process of directional recrystallization, grains with specific orientations grow in the grain boundary region and form the dominant orientation, while grains with lower migration rate form the minor orientation. The alloy produced through directional recrystallization exhibited good recoverable strain and superelastic strain, while the alloy produced through solid solution treatment showed no evident superelastic behavior.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Effect of thermomechanical processing on compressive mechanical properties of Ti-15Mo additively manufactured by laser metal deposition

Edohamen Awannegbe, Liang Chen, Yue Zhao, Zhijun Qiu, Huijun Li

Summary: This study employed laser metal deposition to additively manufacture Ti-15Mo wt% alloy, and subsequently subjected it to post-fabrication uniaxial thermomechanical processing. The results showed that different zones in the microstructure remained after processing, and deformation mechanisms mainly involved slip and martensite formation. The compressive mechanical properties were found to be dependent on strain rate, with higher flow stress and compressive strength observed at higher strain rates. Grain structure homogenisation was not achieved, leading to anisotropic tensile properties.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Crystallographic texture and the mechanical properties of API 5L X70 pipeline steel designated for an arctic environment

Reza Khatib Zadeh Davani, Enyinnaya George Ohaeri, Sandeep Yadav, Jerzy A. Szpunar, Jing Su, Michael Gaudet, Muhammad Rashid, Muhammad Arafin

Summary: This research aims to investigate the effect of roughing and finishing reductions on crystallographic texture. The results show significant heterogeneity in the centerline region, with higher intensity of certain textures. Drop Weight Tear Test indicates that steel specimens with lower and medium reductions exhibit superior low-temperature impact toughness compared to steel with higher reductions. The electrochemical hydrogen charging experiments confirm the presence of internal hydrogen cracks only in steel with lower and medium reductions.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Effect of Cr content in temperature-dependent mechanical properties and strain hardening of a twinning-induced plasticity steel

Flavio De Barbieri, Denis Jorge-Badiola, Rodrigo Allende, Karem Tello, Alfredo Artigas, Franco Perazzo, Henry Jami, Juan Perez Ipina

Summary: This study examines the effect of Cr additions on the mechanical behavior of TWIP steel at temperatures ranging from 25°C to 350°C. The results indicate that different temperature-dependent strengthening mechanisms, including mechanical twinning, Dynamic Strain Aging, and slip bands, are at play. The stacking fault energy (SFE) influences the percentage of mechanical twinning, which in turn affects the strain hardening rate.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Electron beam welding of L12-nanoparticle-strengthened strong and ductile medium-entropy alloys for cryogenic applications

Hanlin Peng, Siming Huang, Ling Hu, Bingbing Luo, Liejun Li, Ian Baker

Summary: This study explores the weldability, microstructures, and mechanical properties of two L1(2)-nanoparticle-strengthened medium-entropy alloys after electron beam welding (EBW). The results show that strong yet ductile defect-free joints were produced, with larger grain sizes in the fusion zones compared to the heat-affected zones and base materials. Both EBWed MEAs exhibited high yield strengths, high ultimate tensile strengths, and good fracture strains at 77 K. The V-doping improved the cryogenic mechanical properties of the TMT MEA.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Strain rate-dependent tensile deformation behavior and fracture mechanism of Mn-N bearing lean duplex stainless steel

Yongxin Wang, Lei Chen, Lizi Shao, Shuo Hao, Motomichi Koyama, Xingzhou Cai, Xiaocong Ma, Miao Jin

Summary: This study investigated the tensile deformation behavior of an Mn-N bearing lean duplex stainless steel with metastable austenite. The results showed that the strain rate had significant influence on the work hardening, strain-induced martensitic transformation, and fracture mechanism.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Recovery of sheet formability of cold-rolled pure titanium by cryogenic-deformation treatment

Jong Woo Won, Seulbi Lee, Hye-Jeong Choe, Yong-Taek Hyun, Dong Won Lee, Jeong Hun Lee

Summary: Cold-rolled pure titanium showed improved sheet formability after undergoing cryogenic-deformation treatment. This treatment increased the thinning capability of the titanium and suppressed cracking during sheet forming. The formation of twins during deformation contributed to high thinning capability and increased strength through grain refinement and dislocation accumulation.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Rapidly induced homogenization and microstructure control of Cu-15Ni-8Sn alloy by electropulsing treatment

Handong Li, Lin Su, Lijuan Wang, Yanbin Jiang, Jiahui Long, Gaoyong Lin, Zhu Xiao, Yanlin Jia, Zhou Li

Summary: Homogenization heat treatment is a key procedure in controlling the second phase, enhancing composition uniformity, and workability of as-cast Cu-15Ni-8Sn alloy. This study found that electropulsing treatment (EPT) can significantly reduce treatment temperature and time, improve elongation and overall mechanical properties of the alloy.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Study on the regulation of microstructure and mechanical properties of Cu-15Sn-0.3Ti alloy by a novel mechanical-heat-electricity synergistic method

Yuxuan Wang, Juntao Zou, Lixing Sun, Yunfei Bai, Zhe Zhang, Junsheng Cheng, Lin Shi, Dazhuo Song, Yihui Jiang, Zhiwei Zhang

Summary: A novel mechanical-heat-electricity synergistic method was proposed to enhance the mechanical properties of Cu-15Sn-0.3Ti alloy by forming annealing twins (ATs). The combination method of Rotary swaging (RS) and Electric pulse treatment (EPT) successfully induced recrystallization and refinement of the microstructure, leading to a significant increase in the strength of the alloy within a short time.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Ta-induced strengthening of CoCrNi-AlTi medium-entropy alloys via nanoscale heterogeneous coherent precipitate

Zhiyi Ding, Jiangtao Xie, Tong Wang, Aiying Chen, Bin Gan, Jinchao Song

Summary: This study demonstrated the Ta-induced strengthening of CoCrNi-AlTi MEAs using nanoscale heterogeneous coherent precipitates. The addition of Ta and aging treatments significantly enhanced the mechanical properties of the alloy, including yield strength, ultimate tensile strength, and elongation.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Microstructural evolution and deformation behavior of an interstitial TRIP high-entropy alloy under dynamic loading

Z. Y. You, Z. Y. Tang, B. Wang, H. W. Zhang, P. Li, L. Zhao, F. B. Chu, H. Ding

Summary: The mechanical properties and microstructural evolution of C-doped TRIP-assisted HEA under dynamic loading conditions were systematically investigated in this study. The results showed that dynamic tensile deformation led to an increase in yield strength and a decrease in ultimate tensile strength, with a trend towards increased total elongation. The primary deformation mechanisms shifted from TRIP and TWIP effects to deformation twinning and dislocations. The presence of carbides formed through C-doping hindered dislocation slip and promoted the activation of multiple twinning systems.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Strong resistance to shear instability in multilayered metallic composites by nanoscale amorphous-BCC crystalline interfaces

Feng Qin, Feihu Chen, Junhua Hou, Wenjun Lu, Shaohua Chen, Jianjun Li

Summary: Plastic instability in strong multilayered composites is completely suppressed by architecting nanoscale BCC Nb crystalline-amorphous CuNb interfaces.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)