4.7 Article

Effect of microstructure and hardness on non-proportional cyclic hardening coefficient and predictions

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2010.01.056

关键词

Multiaxial deformation; Non-proportional cyclic hardening; Hardness effects; 304L stainless steel; 1050 steel

向作者/读者索取更多资源

This paper investigates the effects of microstructure and hardness on non-proportional cyclic hardening of metallic materials. Constant amplitude in-phase and 90 out-of-phase strain-controlled axial-torsion cyclic tests were conducted to evaluate the hardening. Tubular specimens made from 1050 steel in normalized, quenched and tempered, and induction hardened conditions as well as 304L stainless steel were used to study the effect of microstructure on multiaxial cyclic deformation. Reductions in the non-proportional cyclic hardening were observed as the microstructure of 1050 steel changed form pearlitic-ferritic with lower hardness to tempered martensite with higher hardness. Significant non-proportional cyclic hardening was also observed for 304L stainless steel with austenitic microstructure. Multiaxial data generated in this study as well as multiaxial deformation data of several materials from literature suggest non-proportional cyclic hardening can be related to uniaxial cyclic hardening. Non-proportional hardening coefficients predicted from a proposed equation based on this observation were found to be in very good agreement with the experimental values in this study and from the literature. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据