4.7 Article Proceedings Paper

Crack nucleation at the Σ9(2(2)over-bar1) symmetrical tilt grain boundary in tungsten

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2006.10.198

关键词

crack nucleation; grain boundary; atomistic simulation

向作者/读者索取更多资源

Crack nucleation mechanisms and nucleation conditions are still poorly understood. Experimental evidence suggests that crack nucleation mainly occurs when growing twins, slip or persistent slip bands collide with grain boundaries. We therefore started to investigate these processes by atomistic simulations. As a first step, we present here simulations of crack nucleation at the Sigma 9(2 (2) over bar 1) grain boundary in tungsten resulting from the interaction with dislocations. Symmetric twin boundaries and most other high-angle grain boundaries are relatively stable and act as barriers to dislocation motion. When a dislocation is absorbed by such grain boundaries, a stress concentration develops at the absorbing site and a crack is nucleated there. Crack nucleation is investigated under different loading conditions. Our results show that crack nucleation is aided significantly by additional dislocation activity. The relevant mechanisms are significantly more complex than captured by simple pile-up models. (c) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Materials Science, Multidisciplinary

Tribologically induced crystal rotation kinematics revealed by electron backscatter diffraction

C. Haug, D. Molodov, P. Gumbsch, C. Greiner

Summary: Tribological loading induces microstructural changes in metals through dislocation-mediated plastic deformation. Crystal lattice rotations play an important role in friction and wear at the sliding interface, and are influenced by sliding direction and grain orientation.

ACTA MATERIALIA (2022)

Article Materials Science, Multidisciplinary

Efficient parametrization of the atomic cluster expansion

Anton Bochkarev, Yury Lysogorskiy, Sarath Menon, Minaam Qamar, Matous Mrovec, Ralf Drautz

Summary: The article presents an efficient framework for parametrization of atomic cluster expansion (ACE) models for elements, alloys, and molecules, and discusses some key issues in the parameterization process.

PHYSICAL REVIEW MATERIALS (2022)

Article Materials Science, Multidisciplinary

Angular-dependent interatomic potential for large-scale atomistic simulation of the Fe-Cr-H ternary system

Sergei Starikov, Daria Smirnova, Tapaswani Pradhan, Ilia Gordeev, Ralf Drautz, Matous Mrovec

Summary: The recently developed angular-dependent potential for pure iron has been extended to the Fe-Cr-H ternary system, allowing for simulations of Fe-Cr alloys with various hydrogen concentrations. The model's angular-dependent format and machine learning-based development procedure strike a favorable balance between computational cost and parametrization reliability. Validation tests on binary metallic alloys and hydrogen interactions demonstrate the potential's applicability, especially in large-scale simulations of hydrogen diffusion near crystal defects.

PHYSICAL REVIEW MATERIALS (2022)

Article Engineering, Mechanical

Micromechanical fatigue experiments for validation of microstructure-sensitive fatigue simulation models

Ali Riza Durmaz, Erik Natkowski, Nikolai Arnaudov, Petra Sonnweber-Ribic, Stefan Weihe, Sebastian Munstermann, Chris Eberl, Peter Gumbsch

Summary: This study proposes a validation framework where a fatigue test is simulated by embedding measured microstructures into the specimen geometry and adopting an approximation of the experimental boundary conditions. A phenomenological crystal plasticity model is applied to predict deformation in ferritic steel, and the hotspots in commonly used fatigue indicator parameter maps are compared with damage segmented from micrographs. The framework is published for benchmarking future micromechanical fatigue models.

INTERNATIONAL JOURNAL OF FATIGUE (2022)

Article Chemistry, Physical

Programmable gear-based mechanical metamaterials

Xin Fang, Jihong Wen, Li Cheng, Dianlong Yu, Hongjia Zhang, Peter Gumbsch

Summary: This research demonstrates a design paradigm for creating robust robotic metamaterials using versatile gear clusters. The design allows for continuous tuning of elastic properties while maintaining stability and robust maneuverability, even under heavy loads. The gear-based metamaterials offer excellent properties such as tunable Young's modulus, shape morphing, and fast response.

NATURE MATERIALS (2022)

Article Multidisciplinary Sciences

Generating FAIR research data in experimental tribology

Nikolay T. Garabedian, Paul J. Schreiber, Nico Brandt, Philipp Zschumme, Ines L. Blatter, Antje Dollmann, Christian Haug, Daniel Kuemmel, Yulong Li, Franziska Meyer, Carina E. Morstein, Julia S. Rau, Manfred Weber, Johannes Schneider, Peter Gumbsch, Michael Selzer, Christian Greiner

Summary: This paper discusses the lack of FAIR (Findable, Accessible, Interoperable, and Reusable) data and metadata in experimental tribology and proposes a scalable framework for generating FAIR data. Through collaboration with developers, crowdsourcing controlled vocabulary, ontology building, and the use of digital tools, this paper demonstrates a collection of scalable non-intrusive techniques to improve the lifespan, reliability, and reusability of experimental tribological data.

SCIENTIFIC DATA (2022)

Article Materials Science, Multidisciplinary

Elucidating dislocation core structures in titanium nitride through high-resolution imaging and atomistic simulations

J. Salamania, D. G. Sangiovanni, A. Kraych, K. M. Calamba Kwick, I. C. Schramm, L. J. S. Johnson, R. Boyd, B. Bakhit, T. W. Hsu, M. Mrovec, L. Rogstrom, F. Tasnadi, I. A. Abrikosov, M. Oden

Summary: Through high-resolution scanning transmission electron microscopy, different types of dislocations in titanium nitride films are identified, and their effects on chemical bonding are revealed. The findings have significant implications for the design and interpretation of nanoscale and macroscopic properties of TiN.

MATERIALS & DESIGN (2022)

Article Chemistry, Multidisciplinary

Correlated Study of Material Interaction Between Capillary Printed Eutectic Gallium Alloys and Gold Electrodes

Navid Hussain, Torsten Scherer, Chittaranjan Das, Janis Heuer, Rafaela Debastiani, Peter Gumbsch, Jasmin Aghassi-Hagmann, Michael Hirtz

Summary: This study explores the interaction between capillary-printed Galinstan and gold surfaces, revealing the spreading process of liquid metals on gold films and the formation of intermetallic nanostructures. By utilizing various microscopy techniques, a comprehensive understanding of the material interaction between LM and gold is achieved.
Article Materials Science, Multidisciplinary

Classification of slip system interaction in microwires under torsion

Kolja Zoller, Patric Gruber, Michael Ziemann, Alexander Goertz, Peter Gumbsch, Katrin Schulz

Summary: Microwires have gained increasing interest for miniaturizing structural components. Understanding the deformation behavior of microwires is crucial for assessing their applicability and lifespan in specific components. This study analyzes the microstructure evolution of single crystalline gold microwires under torsion, specifically for high-symmetry crystal orientations (100), (110), and (111), using simulation and experimental results. The classification of slip systems can be predicted through theoretical considerations, and it is found that slip system activity, stress relaxation mechanism, and dislocation density depend on specific slip system groups.

COMPUTATIONAL MATERIALS SCIENCE (2023)

Article Materials Science, Multidisciplinary

Electrical Conductivity and Photodetection in 3D-Printed Nanoporous Structures via Solution-Processed Functional Materials

Kai Xia, Zheqin Dong, Qing Sun, Rafaela Debastiani, Sida Liu, Qihao Jin, Yang Li, Ulrich W. Paetzold, Peter Gumbsch, Uli Lemmer, Yolita M. Eggeler, Pavel A. Levkin, Gerardo Hernandez-Sosa

Summary: 3D-printed conductive structures with customized properties are fabricated using digital light processing technology and inkjet printing. By optimizing the deposition conditions, conductive structures with sheet resistance <2 ohm sq(-1) are achieved. The integration of an inkjet-printed photodetector onto the nanoporous substrate demonstrates the potential for additive manufacturing of functional 3D-printed optoelectronic devices.

ADVANCED MATERIALS TECHNOLOGIES (2023)

Article Materials Science, Multidisciplinary

Active learning strategies for atomic cluster expansion models

Yury Lysogorskiy, Anton Bochkarev, Matous Mrovec, Ralf Drautz

Summary: The atomic cluster expansion (ACE) is a new class of data-driven interatomic potentials that have a complete basis set. Automation of the construction of the training dataset and indication of model uncertainty are important for the development of any interatomic potential. This study compares two approaches for uncertainty indication of ACE models and finds that the extrapolation grade based on the D-optimality criterion is more efficient and allows for active exploration of new structures.

PHYSICAL REVIEW MATERIALS (2023)

Article Materials Science, Multidisciplinary

Atomistic simulations of pipe diffusion in bcc transition metals

Sergei Starikov, Vahid Jamebozorgi, Daria Smirnova, Ralf Drautz, Matous Mrovec

Summary: Screw and edge dislocations in body-centered cubic transition metals exhibit distinct diffusion characteristics, with the migration along screw dislocations being faster due to their different atomic structures.

ACTA MATERIALIA (2023)

Article Materials Science, Multidisciplinary

Disordering complexion transition of grain boundaries in bcc metals: Insights from atomistic simulations

S. Starikov, A. Abbass, R. Drautz, M. Mrovec

Summary: This study investigates temperature-induced disordering transitions of grain boundaries in body-centered cubic metals using classical atomistic simulations. The study reveals that gradual heating leads to continuous disordering of the grain boundary structure, accompanied by two complexion transitions, analogous to transitions described by the Berezinskii-Kosterlitz-Thouless-Halperin-Nelson-Young theory.

ACTA MATERIALIA (2023)

Article Physics, Multidisciplinary

Confinement-Induced Diffusive Sound Transport in Nanoscale Fluidic Channels

Hannes Holey, Peter Gumbsch, Lars Pastewka

Summary: This study employs molecular dynamics simulations to investigate flow at the molecular scale and explores the influence of in-plane wavelengths. By probing the long wavelength limit in thermodynamic equilibrium, anomalous relaxation of density and longitudinal momentum fluctuations is observed, which can be described by an effective continuum theory.

PHYSICAL REVIEW LETTERS (2023)

Article Materials Science, Multidisciplinary

Effects of thermal, elastic, and surface properties on the stability of SiC polytypes

Senja Ramakers, Anika Marusczyk, Maximilian Amsler, Thomas Eckl, Matous Mrovec, Thomas Hammerschmidt, Ralf Drautz

Summary: This paper investigates the thermodynamic stability of different SiC polytypes and identifies that the differences in surface energy are likely the driving force for nucleation, while the differences in bulk thermodynamic stability slightly favor certain polytypes.

PHYSICAL REVIEW B (2022)

Article Nanoscience & Nanotechnology

The role of parent austenite grain size on the variant selection and intervariant boundary network in a lath martensitic steel

Ahmad Mirzaei, Peter D. Hodgson, Xiang Ma, Vanessa K. Peterson, Ehsan Farabi, Gregory S. Rohrer, Hossein Beladi

Summary: This study investigated the influence of parent austenite grain refinement on the intervariant boundary network in a lath martensitic steel. It found that refining the parent austenite grain led to a decrease in the fraction of certain boundaries in the martensite and an increase in the connectivity of low energy boundaries, ultimately improving the impact toughness.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

The interdependence of the thermal and mechanical cycling behaviour in Ti2448 (Ti-24Nb-4Zr-8Sn, wt%)

N. L. Church, C. E. P. Talbot, L. D. Connor, S. Michalik, N. G. Jones

Summary: Metastable beta Ti alloys based on the Ti-Nb system have attracted attention due to their unique properties. However, the unstable cyclic behavior of these alloys has hindered their widespread industrial use. Recent studies have shown that internal stresses, including those from dislocations, may be responsible for this behavior. This study demonstrates that inter-cycle thermal treatments can mitigate the unstable cyclic behavior, providing a significant breakthrough in our understanding of Ti-Nb superelastic materials.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Ultrasonic-assisted soldering of SiC ceramic and aluminum alloy with a commercial inactive Sn3.0Ag0.5Cu solder

Di Zhao, Chenchen Zhao, Ziyang Xiu, Jiuchun Yan

Summary: This study proposes a novel strategy for achieving the bonding of SiC ceramic and Al alloy using ultrasound. The ultrasound promotes the dissolution of Al into the solder, activating the solder and triggering the interfacial reaction between SiC ceramic and solder. With increasing ultrasonic duration, the bonding between SiC and Al transitions from partial to full metallurgical bonding.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Effect of grain orientation and precipitates on the superelasticity of Fe-Ni-Co-Al polycrystalline alloys

Kang Du, Yang Zhang, Guangda Zhao, Tao Huang, Liyuan Liu, Junpeng Li, Xiyu Wang, Zhongwu Zhang

Summary: This paper systematically investigated the evolution of microstructure in Fe-Ni-Co-Al polycrystalline alloys and its effects on mechanical properties. The results revealed that the migration of grain boundaries in different processes is driven by different factors, which impacts the grain orientation and precipitate formation. In the process of directional recrystallization, grains with specific orientations grow in the grain boundary region and form the dominant orientation, while grains with lower migration rate form the minor orientation. The alloy produced through directional recrystallization exhibited good recoverable strain and superelastic strain, while the alloy produced through solid solution treatment showed no evident superelastic behavior.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Effect of thermomechanical processing on compressive mechanical properties of Ti-15Mo additively manufactured by laser metal deposition

Edohamen Awannegbe, Liang Chen, Yue Zhao, Zhijun Qiu, Huijun Li

Summary: This study employed laser metal deposition to additively manufacture Ti-15Mo wt% alloy, and subsequently subjected it to post-fabrication uniaxial thermomechanical processing. The results showed that different zones in the microstructure remained after processing, and deformation mechanisms mainly involved slip and martensite formation. The compressive mechanical properties were found to be dependent on strain rate, with higher flow stress and compressive strength observed at higher strain rates. Grain structure homogenisation was not achieved, leading to anisotropic tensile properties.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Crystallographic texture and the mechanical properties of API 5L X70 pipeline steel designated for an arctic environment

Reza Khatib Zadeh Davani, Enyinnaya George Ohaeri, Sandeep Yadav, Jerzy A. Szpunar, Jing Su, Michael Gaudet, Muhammad Rashid, Muhammad Arafin

Summary: This research aims to investigate the effect of roughing and finishing reductions on crystallographic texture. The results show significant heterogeneity in the centerline region, with higher intensity of certain textures. Drop Weight Tear Test indicates that steel specimens with lower and medium reductions exhibit superior low-temperature impact toughness compared to steel with higher reductions. The electrochemical hydrogen charging experiments confirm the presence of internal hydrogen cracks only in steel with lower and medium reductions.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Effect of Cr content in temperature-dependent mechanical properties and strain hardening of a twinning-induced plasticity steel

Flavio De Barbieri, Denis Jorge-Badiola, Rodrigo Allende, Karem Tello, Alfredo Artigas, Franco Perazzo, Henry Jami, Juan Perez Ipina

Summary: This study examines the effect of Cr additions on the mechanical behavior of TWIP steel at temperatures ranging from 25°C to 350°C. The results indicate that different temperature-dependent strengthening mechanisms, including mechanical twinning, Dynamic Strain Aging, and slip bands, are at play. The stacking fault energy (SFE) influences the percentage of mechanical twinning, which in turn affects the strain hardening rate.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Electron beam welding of L12-nanoparticle-strengthened strong and ductile medium-entropy alloys for cryogenic applications

Hanlin Peng, Siming Huang, Ling Hu, Bingbing Luo, Liejun Li, Ian Baker

Summary: This study explores the weldability, microstructures, and mechanical properties of two L1(2)-nanoparticle-strengthened medium-entropy alloys after electron beam welding (EBW). The results show that strong yet ductile defect-free joints were produced, with larger grain sizes in the fusion zones compared to the heat-affected zones and base materials. Both EBWed MEAs exhibited high yield strengths, high ultimate tensile strengths, and good fracture strains at 77 K. The V-doping improved the cryogenic mechanical properties of the TMT MEA.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Strain rate-dependent tensile deformation behavior and fracture mechanism of Mn-N bearing lean duplex stainless steel

Yongxin Wang, Lei Chen, Lizi Shao, Shuo Hao, Motomichi Koyama, Xingzhou Cai, Xiaocong Ma, Miao Jin

Summary: This study investigated the tensile deformation behavior of an Mn-N bearing lean duplex stainless steel with metastable austenite. The results showed that the strain rate had significant influence on the work hardening, strain-induced martensitic transformation, and fracture mechanism.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Recovery of sheet formability of cold-rolled pure titanium by cryogenic-deformation treatment

Jong Woo Won, Seulbi Lee, Hye-Jeong Choe, Yong-Taek Hyun, Dong Won Lee, Jeong Hun Lee

Summary: Cold-rolled pure titanium showed improved sheet formability after undergoing cryogenic-deformation treatment. This treatment increased the thinning capability of the titanium and suppressed cracking during sheet forming. The formation of twins during deformation contributed to high thinning capability and increased strength through grain refinement and dislocation accumulation.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Rapidly induced homogenization and microstructure control of Cu-15Ni-8Sn alloy by electropulsing treatment

Handong Li, Lin Su, Lijuan Wang, Yanbin Jiang, Jiahui Long, Gaoyong Lin, Zhu Xiao, Yanlin Jia, Zhou Li

Summary: Homogenization heat treatment is a key procedure in controlling the second phase, enhancing composition uniformity, and workability of as-cast Cu-15Ni-8Sn alloy. This study found that electropulsing treatment (EPT) can significantly reduce treatment temperature and time, improve elongation and overall mechanical properties of the alloy.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Study on the regulation of microstructure and mechanical properties of Cu-15Sn-0.3Ti alloy by a novel mechanical-heat-electricity synergistic method

Yuxuan Wang, Juntao Zou, Lixing Sun, Yunfei Bai, Zhe Zhang, Junsheng Cheng, Lin Shi, Dazhuo Song, Yihui Jiang, Zhiwei Zhang

Summary: A novel mechanical-heat-electricity synergistic method was proposed to enhance the mechanical properties of Cu-15Sn-0.3Ti alloy by forming annealing twins (ATs). The combination method of Rotary swaging (RS) and Electric pulse treatment (EPT) successfully induced recrystallization and refinement of the microstructure, leading to a significant increase in the strength of the alloy within a short time.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Ta-induced strengthening of CoCrNi-AlTi medium-entropy alloys via nanoscale heterogeneous coherent precipitate

Zhiyi Ding, Jiangtao Xie, Tong Wang, Aiying Chen, Bin Gan, Jinchao Song

Summary: This study demonstrated the Ta-induced strengthening of CoCrNi-AlTi MEAs using nanoscale heterogeneous coherent precipitates. The addition of Ta and aging treatments significantly enhanced the mechanical properties of the alloy, including yield strength, ultimate tensile strength, and elongation.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Microstructural evolution and deformation behavior of an interstitial TRIP high-entropy alloy under dynamic loading

Z. Y. You, Z. Y. Tang, B. Wang, H. W. Zhang, P. Li, L. Zhao, F. B. Chu, H. Ding

Summary: The mechanical properties and microstructural evolution of C-doped TRIP-assisted HEA under dynamic loading conditions were systematically investigated in this study. The results showed that dynamic tensile deformation led to an increase in yield strength and a decrease in ultimate tensile strength, with a trend towards increased total elongation. The primary deformation mechanisms shifted from TRIP and TWIP effects to deformation twinning and dislocations. The presence of carbides formed through C-doping hindered dislocation slip and promoted the activation of multiple twinning systems.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Strong resistance to shear instability in multilayered metallic composites by nanoscale amorphous-BCC crystalline interfaces

Feng Qin, Feihu Chen, Junhua Hou, Wenjun Lu, Shaohua Chen, Jianjun Li

Summary: Plastic instability in strong multilayered composites is completely suppressed by architecting nanoscale BCC Nb crystalline-amorphous CuNb interfaces.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)