4.6 Article

Facile synthesis of highly branched jacks-like ZnO nanorods and their applications in dye-sensitized solar cells

期刊

MATERIALS RESEARCH BULLETIN
卷 46, 期 9, 页码 1473-1479

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.materresbull.2011.04.027

关键词

Nanostructures; Oxides; Chemical synthesis; Electron microscopy; X-ray diffraction

资金

  1. Engineering Research Center Program [2011-0001055]
  2. Ministry of Education, Science, and Technology

向作者/读者索取更多资源

Highly branched, jacks-like ZnO nanorods architecture were explored as a photoanode in dye-sensitized solar cells, and their photovoltaic performance was compared with that of branch-free ZnO nanorods photoanodes. The highly branched network and large pores of the jacks-like ZnO nanorods electrodes enhances the charge transport, and electrolyte penetration. Thus, the jacks-like ZnO nanorods DSSCs render a higher conversion efficiency of eta = 1.82% (V(oc) = 0.59 V. J(sc) = 5.52 mA cm(-2)) than that of the branch-free ZnO nanorods electrodes (eta = 1.08%, V(oc) = 0.49 V, J(sc) = 4.02 mA cm(-2)). The incident photon-to-current conversion efficiency measurements reveal that the jacks-like ZnO nanorods DSSCs exhibit higher internal quantum efficiency (similar to 59.1%) than do the branch-free ZnO nanorods DSSC (similar to 52.5%). The charge transfer resistances at the ZnO/dye/electrolyte interfaces investigated using electrochemical impedance spectroscopy showed that the jacks-like ZnO nanorods DSSC had high charge transfer resistance and a slightly longer electron lifetime, thus improving the solar-cell performance. (c) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据