4.5 Article

Response surface optimization of nitrite removal from aqueous solution by Fe3O4 stabilized zero-valent iron nanoparticles using a three-factor, three-level Box-Behnken design

期刊

RESEARCH ON CHEMICAL INTERMEDIATES
卷 42, 期 3, 页码 2247-2265

出版社

SPRINGER
DOI: 10.1007/s11164-015-2147-6

关键词

Zero-valent iron nanoparticles; NO2- removal; Box-Behnken design; Response surface methodology; Regression analysis

资金

  1. CSIR (Council of Scientific and Industrial Research)

向作者/读者索取更多资源

The magnetite (Fe3O4) stabilized zero-valent iron nanoparticles (Fe3O4-ZVINPs) were synthesized and characterized by TEM, SEM, BET, and XRD techniques and used for removal of NO (2) (-) from aqueous solution. Response surface methodology (RSM) combined with a three-level, three-variable, Box-Behnken design was used to optimize the individual and interactive effects of three different experimentally controlled factors like pH, temperature, and Fe3O4-ZVINPs dose on removal efficiency. The RSM uses a second-order polynomial quadratic model (SOPM) for predicting the optimum point. The analysis of variance has been employed to evaluate the significance of the polynomial model for predicting the optimal conditions of independent process variables to get maximum removal efficiency. Three-dimensional (3D) response surface plots were constructed to visualize the simultaneous interactive effects between two process variables. Regression analysis showed a good fit of the experimental data to the SOPM with a coefficient of determination (R (2)) of 0.993 and Fisher F-value of 82.27. All the three factors had a significant impact on removal of NO (2) (-) . The predicted value of model (94.54 mg g(-1)) was in good agreement with experimental value (93.78 mg g(-1)) under the optimum conditions of temperature 49.6 A degrees C; pH 4; and dose 0.4 g L-1. The study demonstrated that Fe3O4 in combination with ZVINPs significantly accelerated the NO (2) (-) removal. The removal of NO (2) (-) from synthetic ground water was also investigated at optimum conditions to assess the effect of the other competing ions. The results of the study indicate that Fe3O4-ZVINPs have promising potential to cleanup NO (2) (-) from contaminated water.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据