4.6 Article

Cerium-based coating for enhancing the corrosion resistance of bio-degradable Mg implants

期刊

MATERIALS CHEMISTRY AND PHYSICS
卷 119, 期 3, 页码 384-388

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.matchemphys.2009.09.010

关键词

Biomaterials; Coating; Corrosion; Magnesium

资金

  1. Research Committee of the Hong Kong Polytechnic University [G-RPOF]

向作者/读者索取更多资源

Recently there has been interest in employing degradable metallic implants for internal fixation in bone fracture healing. The major purpose of using degradable implants is to avoid a second surgery for implant removal when bone healing has completed. However, the corrosion rate of Mg in vivo is too high. Thus increasing the corrosion resistance of Mg is the key problem to address in the development of degradable Mg implants. One possible route is by way of surface treatment, which would lower the corrosion rate at the initial phase of bone healing, the period during which the implant provides mechanical support for the broken bone. In the present study cerium oxide coating was prepared on pure Mg by cathodic deposition in cerium nitrate solution followed by hydrothermal treatment. The coated samples were characterized by SEM, EDS and XRD. The corrosion resistance in Hanks' solution (a simulated body fluid) was studied using polarization method and electrochemical impedance spectroscopy (EIS). The corrosion resistance of cerium oxide coated Mg in Hanks' solution at 37 degrees C and pH 7.4 was higher than that of bare Mg by about two orders of magnitude. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据