4.5 Article

Machining Damage in Edge Trimming of CFRP

期刊

MATERIALS AND MANUFACTURING PROCESSES
卷 27, 期 7, 页码 802-808

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/10426914.2011.648253

关键词

CFRP composites; Delamination; Edge trimming; Effective chip thickness; Surface roughness; Tool wear

资金

  1. Petroleum Institute
  2. Wichita State University Manufacturing Innovation and Development in Aviation Initiative (MIND)

向作者/读者索取更多资源

Conventional machining processes such as turning, milling, drilling, abrasive cutting, and grinding are commonly used to bring composite parts to final shape and assembly requirements. However, due to the layered nature of these materials, their machining may generate undesirable defects such as delamination and high surface roughness. The service life of composite components is believed to be highly dependent on machining quality and damage due to machining may result in scraping expensive parts. In this work, an experimental investigation was conducted to determine the effect of spindle speed, feed rate, and tool condition on machining quality of carbon fiber reinforced polymer (CFRP) composites during edge trimming operation. Machining quality was quantified in terms of average delamination depth and surface roughness. Delaminations were also characterized by their type and frequency of occurrence. It was found that average delamination depth and surface roughness increase with an increase in feed rate and an increase in cutting distance and decrease with an increase in spindle speed. There is a strong relationship between delamination damage and effective chip thickness. The cutting conditions for best machining quality are high spindle speed and low feed rate, which correspond to small effective chip thickness. The most frequent delamination type was found to be Type I/II.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据