4.7 Article

Experimental characterization and numerical modeling of micromechanical damage under different stress states

期刊

MATERIALS & DESIGN
卷 50, 期 -, 页码 207-222

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2013.02.075

关键词

Ductile fracture; Shear modified Gurson model; Parameters identification; Stress state; Punching process; Numerical simulation

向作者/读者索取更多资源

The use of HSLA steels for the manufacture of automotive components is interesting from an engineering point of view. This family of steels, while possessing high strength, also has good formability and can be used in forming manufacturing processes. In some forming processes such as blanking, shear strain localization occurs, which causes damage and results in the final fracture of the material. This paper presents an experimental study based on in situ tests to understand and identify the physical mechanisms of ductile damage under two stress states: tension and shear. Different macroscopic tests were performed to calibrate a damage model based on a micromechanical approach. This damage model is based on the Gurson-Tvergaard-Needleman theory and presents recent improvements proposed by Nahshon and Hutchinson and by Nielsen and Tvergaard so as to better predict fracture under a wide range of stress states, especially with low levels of stress triaxiality. These extensions have made the identification of the material parameter more complicated. In this work an identification strategy has been proposed using tests on specimens with different shapes. The identified parameter values are validated and the fracture model show good predictive capability over a wide stress state range. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据